Skip to main content

Image processing library powered by Intel(R) IPP

Project description

scikit-IPP (skipp)

scikit-ipp is optimization of open-source image processing library scikit-image by using Intel® Integrated Performance Primitives (Intel® IPP) library.

scikit-ipp is a standalone package, provided scikit-image-like API to some of Intel® IPP functions.

Getting started

scikit-ipp is easily built from source with the majority of the necessary prerequisites available on conda. The instructions below detail how to gather the prerequisites, setting one's build environment, and finally building and installing the completed package. scikit-ipp can be built for all three major platforms (Windows, Linux, macOS).

The build-process (using setup.py) happens in 2 stages:

  1. Running cython on C and Cython sources
  2. Compiling and linking

Building scikit-ipp using conda-build

The easiest way to build scikit-ipp is using the conda-build with the provided recipe.

Prerequisites

  • Python version >= 3.6
  • conda-build version >= 3
  • C compiler

Building scikit-ipp

cd <checkout-dir>
conda build -c intel conda-recipe

This will build the conda package and tell you where to find it (.../scikit-ipp*.tar.bz2).

Installing the built scikit-ipp conda package

conda install <path-to-conda-package-as-built-above>

To actually use your scikit-ipp, dependent packages need to be installed. To ensure, do

Linux or Windows:

conda install -c intel numpy ipp

Building documentation for scikit-ipp

Prerequisites for creating documentation

  • sphinx >= 3.0
  • sphinx_rtd_theme >= 0.4
  • sphinx-gallery >= 0.3.1
  • matplotlib > = 3.0.1

Building documentation

  1. Install scikit-ipp into your python environment
  2. cd doc && make html
  3. The documentation will be in doc/_build/html

Examples

Introductory examples for scikit-ipp link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

scikit_ipp-1.2.0-8-cp39-cp39-win_amd64.whl (151.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_ipp-1.2.0-8-cp39-cp39-manylinux2014_x86_64.whl (258.9 kB view details)

Uploaded CPython 3.9

scikit_ipp-1.2.0-6-cp38-cp38-win_amd64.whl (154.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_ipp-1.2.0-6-cp38-cp38-manylinux2014_x86_64.whl (258.0 kB view details)

Uploaded CPython 3.8

scikit_ipp-1.2.0-6-cp37-cp37m-win_amd64.whl (149.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_ipp-1.2.0-6-cp37-cp37m-manylinux2014_x86_64.whl (251.0 kB view details)

Uploaded CPython 3.7m

scikit_ipp-1.2.0-5-cp37-cp37m-win_amd64.whl (149.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_ipp-1.2.0-5-cp37-cp37m-manylinux2014_x86_64.whl (250.3 kB view details)

Uploaded CPython 3.7m

File details

Details for the file scikit_ipp-1.2.0-8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 151.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.6.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4568af5251af91a6eeee491a91f98f4236701aff641bda8c2a45234242055d92
MD5 f8ecc3a70ba3c9ff8db263ba7fa83003
BLAKE2b-256 45e8ed2b93601bc9285e96830fa6b4ab401aac09ffb9bac9d678e28986421856

See more details on using hashes here.

File details

Details for the file scikit_ipp-1.2.0-8-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-8-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 258.9 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.6.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-8-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 309c6de3b56fcfaa27a73a1428c46bbffa853518d77d57c8182df977b806e10f
MD5 000ca47f16fe6abb47c787841b18902e
BLAKE2b-256 0a63bbe536f3fac13113417d8fa13580c80a9063ab1f727a664d6e35a04970e7

See more details on using hashes here.

File details

Details for the file scikit_ipp-1.2.0-6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 154.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6fdc34931af0b5fa31b61fcdf35f41c86512b1aef1259d9a09ca77124c6b4a19
MD5 197948b2c77370092fb24b28ba6c3b0c
BLAKE2b-256 f9c5d6677f0629fdda296ed764958e3f511d16f979dc6141cc1198e575172e45

See more details on using hashes here.

File details

Details for the file scikit_ipp-1.2.0-6-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-6-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 258.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-6-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef125e71dd88680123b3569cb677f658c19d8727347b46a23d845358103e8098
MD5 18ab75fa760952027b30a161cea9db94
BLAKE2b-256 037dd159a85b977bc7bdbe22f84744291790f7a925f6794e36b5266a717301c6

See more details on using hashes here.

File details

Details for the file scikit_ipp-1.2.0-6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 149.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3536094170887a755be0294d36eedcb54c33c0aaf5e2fcfbfc86531c80589f5e
MD5 3e8a13aa0a6ea60ad7dc6e561d0952b0
BLAKE2b-256 aad7bfc1c491e54cbc33614410b8e7a64b325ba8c32323bf65d427716781cef1

See more details on using hashes here.

File details

Details for the file scikit_ipp-1.2.0-6-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-6-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 251.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-6-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45d825f2ddb07e38532a8ed65746e81d8293e105f9d344b73fedd735e78ec3bd
MD5 b9ce46247ea49c6e5a224bed48b19ee4
BLAKE2b-256 bc92a18e0a730b20d4c9d1aa11314a1396ba299c113a0b95800f97c465e53682

See more details on using hashes here.

File details

Details for the file scikit_ipp-1.2.0-5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 149.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 83754a9d214ef6082c37d7177dbb400e8244f7dd9661ecf90ea91844aa40c245
MD5 623a37c5d1e471192dd7644ac1566647
BLAKE2b-256 ed0deb13aef4ee85322f3aafe942b68c6bab5d6750c8506c38432bffd29e2819

See more details on using hashes here.

File details

Details for the file scikit_ipp-1.2.0-5-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_ipp-1.2.0-5-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 250.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200925 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for scikit_ipp-1.2.0-5-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8783f4c2c07e5138a19e4fe66b0a37704bec0008bf85512f7849e04565bef8b
MD5 696df59fbf546216155f2f8cc1a603e5
BLAKE2b-256 3ef2a3795e69745e9d099e663f65d1bfc2c6a4dab98864e9c62adf6ba9bfc60f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page