Skip to main content

No project description provided

Project description

Landmark

landmark is a Python package that constructs landmarks $L_k = {x_1, x_2, \dots, x_k }$ from a point set $X \subset \mathbb{R}^d$ or metric space $(X, d_X)$.

Below is an example a data set $X$ (blue points), some sample landmarks $L$ (red), along with the coverage (yellow) and packing (orange) properties they obey.

Landmarks example

Installation

The package can be installed with pip:

python -m pip install scikit-landmark

Alternatively, both the source distribution and wheels are available on PyPI for distributing and offline use.

Usage

Given a point cloud $X \in \mathbb{R}^{n \times d}$ represented as a numpy matrix with $n$ points in $d$ dimensions, the indices of the landmarks can be found with the landmarks function:

from landmark import landmarks
X = np.random.uniform(size=(50,2))
ind = landmarks(X, k = 10) ## Finds the indices of 25 landmarks

The first $k$-indices of ind are equivalent to the $k$-th prefix of the greedy permutation. You can get their covering radii and their predecessors by specifying full_output=True:

ind, info = landmarks(X, k = 10, full_output = True)
print(ind)                  ## prefix indices
print(info['radii'])        ## insertion radii 
print(info['predecessors']) ## predecessor map 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_landmark-0.1.1.tar.gz (64.3 MB view details)

Uploaded Source

Built Distributions

scikit_landmark-0.1.1-cp312-cp312-win_amd64.whl (40.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_landmark-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (47.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_landmark-0.1.1-cp312-cp312-macosx_11_0_arm64.whl (37.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_landmark-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl (37.7 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

scikit_landmark-0.1.1-cp311-cp311-win_amd64.whl (40.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_landmark-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (47.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_landmark-0.1.1-cp311-cp311-macosx_11_0_arm64.whl (36.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_landmark-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl (37.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_landmark-0.1.1-cp310-cp310-win_amd64.whl (40.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_landmark-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (47.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_landmark-0.1.1-cp310-cp310-macosx_11_0_arm64.whl (36.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_landmark-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl (37.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_landmark-0.1.1-cp39-cp39-win_amd64.whl (40.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_landmark-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (47.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_landmark-0.1.1-cp39-cp39-macosx_11_0_arm64.whl (36.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

scikit_landmark-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl (37.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scikit_landmark-0.1.1.tar.gz.

File metadata

  • Download URL: scikit_landmark-0.1.1.tar.gz
  • Upload date:
  • Size: 64.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for scikit_landmark-0.1.1.tar.gz
Algorithm Hash digest
SHA256 9e2c807d345fd5397f07f73641c4926ef43203c241e0e02dd95ba1f0afa3aa8b
MD5 a65f21b1df5e95d4f3ee49fccd5b79cb
BLAKE2b-256 df3827c51a7221b93b6db7755df407f2a9754c3b10e816c9c7db6a79d709fbd6

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 da7e640d51c5753ee0da1ac0be8c99926795a43c31de25c064219a33070c7770
MD5 c6cc082aa29500dd76b8b888d450942f
BLAKE2b-256 2787e3845c14c23e72e607defc84fd4f21105e28bfcc86e966acbf88ceb9d66c

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e6a34ec3e1dc897cb9b0774d2b7aa422417fef59b7a472b79e7eeb1950ff9b8
MD5 2f0526e62321d01a2456ffc667e8f414
BLAKE2b-256 914c78e0274c1ec4c805f5c4801529f7a868838d2507106e3bf020a295ec795e

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7339761e71acffc81aa3654426a52a75415b0d4ca5d013bb94491b64c57278c
MD5 4228bdec237dd0adec4fcfe628601179
BLAKE2b-256 0a9cadb93d41479e0c22044a682d734d65dd17bac41755dee13e7dd96d511b61

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f5eda93d015d0eb35f1cbe55d0d63c698815fd8db97a5f0c4a81af1ee7115c30
MD5 00996fa418e9e383f84e1bee1bddbb97
BLAKE2b-256 ede0195d23ee86855b32a0918fd1a95953eb40b024f0deec6e94320ce0a593e8

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d2a6d2e4a2c005ec31865b5c8552e1f45264f8d9a826cb1d9af47da1ebd5ea88
MD5 c86d850e0aa1ffea37009a3d27c1b764
BLAKE2b-256 ebbe3fe75d30d184a0bca3b0076481fa3a8241e36916b54db7779629c8bf6401

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c33c8ae5cbc3dd035f56ca6b88267e34cedeab15db61ab94768b13480966c2c0
MD5 7128061d74bd56d9fb5f66fbcbb2c0cf
BLAKE2b-256 7e5efc0a00247d1d3daf49c17fd0b72f854feed426da261c0a22d6e8a77b8722

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bd0f9e8f3f8e833baebcb4a33fb74abc0471e02fc7b6baf07c1af6bf44f2f7a
MD5 b0d222e76914ada9e5dc4ca5118a55d1
BLAKE2b-256 b8aadc41dd8bc7a3a944c8c8e5564123ab721dc3be19954c5b8e7bf3df481162

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 64a430c9af6df3fdc050581d176a16c29b70ba2f7819e2f5706e65b83ee168f2
MD5 378a945673423994b2c4a18bb733b3ac
BLAKE2b-256 09b1cc750c29e8cb6af50e1ccdc40f87a81c62bb83e5947ff5cd2733a231fb5c

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 305fbe25489138d852f76f2c2812a750542b23a506e37e924b197eeeb5bf08ad
MD5 fb79ef33bc64e85dea4473bd8b937b43
BLAKE2b-256 5b508e987715ba34d095849a7215bb35a4e9fb36c5050215bae7a9116dba7b1e

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7e9110b687a08b59b5acbd673297b86fe80fabd3a921fc3d0a02548588aaea0
MD5 4984f8b53f940a0b689e66855ced2d84
BLAKE2b-256 759941512ae28b992918b8480775d86e1470072095f8e82a65f6396dff116561

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 555d48f59aca65df23dae648957375d604a871f44f448c2f6ef5e2009103a778
MD5 61faa33800d4e4d3c0fac1b6af470de9
BLAKE2b-256 c9db1454490e8b855b289557ba4c23f091f34329a8cc6e18971b1205d71d3e88

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 97a05a21191684a2b299eb729548c1c4d145fcec7c94166d693c46769f7e0550
MD5 11e17bcc4bfa97ec07559118834cacf5
BLAKE2b-256 5349e1189f2b12843b1f99cba860d290f9169cb44f037ebe04a7eef037d51914

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a430beb1affd5e13fc16b03c4b31ab05d7fdd2ea96f2a3d07220f6e038b0a96a
MD5 e69180265553f2f646174258605ec089
BLAKE2b-256 e9a00511d5e14df93a0e764de7fa93858bc65a47211426b1cf7042bf71da16c4

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1cf9596d878e02135eb9225a023cf9a1192aa8030501f20d92e3146a7a23d08
MD5 9819330f505bb8d4d79fefa93edf2946
BLAKE2b-256 987fa387c52512fca129b973e442ec3032f043252fa054df98f4a5a73e24fce8

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c49370246bebf6b8a956d1c5443eb187a73b5b268420ded1f0ebaf9124e55f2
MD5 802a8a374ccc1bcd12dcea3c02c31ab7
BLAKE2b-256 da3383c57c08f08ee4186cd3fa687c71ff327d6facb9fc0d2e7e475d947063c3

See more details on using hashes here.

File details

Details for the file scikit_landmark-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_landmark-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d1d4fad5f340a1fe3bfa9146fdfbc820087cf6b2edc2220cda6ab6349c0e417
MD5 43bd079f3f5448c177d48b2bfa26bf23
BLAKE2b-256 4425ff3f4097632215d6fe02c7266fe1b90f9fe111262a8c157be5675dd31482

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page