No project description provided
Project description
Landmark
landmark
is a Python package that constructs landmarks $L_k = {x_1, x_2, \dots, x_k }$ from a point set $X \subset \mathbb{R}^d$ or metric space $(X, d_X)$.
Below is an example a data set $X$ (blue points), some sample landmarks $L$ (red), along with the coverage (yellow) and packing (orange) properties they obey.
Installation
The package can be installed with pip:
python -m pip install scikit-landmark
Alternatively, both the source distribution and wheels are available on PyPI for distributing and offline use.
Usage
Given a point cloud $X \in \mathbb{R}^{n \times d}$ represented as a numpy matrix with $n$ points in $d$ dimensions, the indices of the landmarks can be found with the landmarks
function:
from landmark import landmarks
X = np.random.uniform(size=(50,2))
ind = landmarks(X, k = 10) ## Finds the indices of 25 landmarks
The first $k$-indices of ind
are equivalent to the $k$-th prefix of the greedy permutation. You can get their covering radii and their predecessors by specifying full_output=True
:
ind, info = landmarks(X, k = 10, full_output = True)
print(ind) ## prefix indices
print(info['radii']) ## insertion radii
print(info['predecessors']) ## predecessor map
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file scikit_landmark-0.1.1.tar.gz
.
File metadata
- Download URL: scikit_landmark-0.1.1.tar.gz
- Upload date:
- Size: 64.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e2c807d345fd5397f07f73641c4926ef43203c241e0e02dd95ba1f0afa3aa8b |
|
MD5 | a65f21b1df5e95d4f3ee49fccd5b79cb |
|
BLAKE2b-256 | df3827c51a7221b93b6db7755df407f2a9754c3b10e816c9c7db6a79d709fbd6 |
File details
Details for the file scikit_landmark-0.1.1-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 40.8 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da7e640d51c5753ee0da1ac0be8c99926795a43c31de25c064219a33070c7770 |
|
MD5 | c6cc082aa29500dd76b8b888d450942f |
|
BLAKE2b-256 | 2787e3845c14c23e72e607defc84fd4f21105e28bfcc86e966acbf88ceb9d66c |
File details
Details for the file scikit_landmark-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 47.3 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e6a34ec3e1dc897cb9b0774d2b7aa422417fef59b7a472b79e7eeb1950ff9b8 |
|
MD5 | 2f0526e62321d01a2456ffc667e8f414 |
|
BLAKE2b-256 | 914c78e0274c1ec4c805f5c4801529f7a868838d2507106e3bf020a295ec795e |
File details
Details for the file scikit_landmark-0.1.1-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 37.0 kB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7339761e71acffc81aa3654426a52a75415b0d4ca5d013bb94491b64c57278c |
|
MD5 | 4228bdec237dd0adec4fcfe628601179 |
|
BLAKE2b-256 | 0a9cadb93d41479e0c22044a682d734d65dd17bac41755dee13e7dd96d511b61 |
File details
Details for the file scikit_landmark-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl
- Upload date:
- Size: 37.7 kB
- Tags: CPython 3.12, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5eda93d015d0eb35f1cbe55d0d63c698815fd8db97a5f0c4a81af1ee7115c30 |
|
MD5 | 00996fa418e9e383f84e1bee1bddbb97 |
|
BLAKE2b-256 | ede0195d23ee86855b32a0918fd1a95953eb40b024f0deec6e94320ce0a593e8 |
File details
Details for the file scikit_landmark-0.1.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 40.6 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2a6d2e4a2c005ec31865b5c8552e1f45264f8d9a826cb1d9af47da1ebd5ea88 |
|
MD5 | c86d850e0aa1ffea37009a3d27c1b764 |
|
BLAKE2b-256 | ebbe3fe75d30d184a0bca3b0076481fa3a8241e36916b54db7779629c8bf6401 |
File details
Details for the file scikit_landmark-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 47.2 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c33c8ae5cbc3dd035f56ca6b88267e34cedeab15db61ab94768b13480966c2c0 |
|
MD5 | 7128061d74bd56d9fb5f66fbcbb2c0cf |
|
BLAKE2b-256 | 7e5efc0a00247d1d3daf49c17fd0b72f854feed426da261c0a22d6e8a77b8722 |
File details
Details for the file scikit_landmark-0.1.1-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 36.6 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1bd0f9e8f3f8e833baebcb4a33fb74abc0471e02fc7b6baf07c1af6bf44f2f7a |
|
MD5 | b0d222e76914ada9e5dc4ca5118a55d1 |
|
BLAKE2b-256 | b8aadc41dd8bc7a3a944c8c8e5564123ab721dc3be19954c5b8e7bf3df481162 |
File details
Details for the file scikit_landmark-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 37.5 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64a430c9af6df3fdc050581d176a16c29b70ba2f7819e2f5706e65b83ee168f2 |
|
MD5 | 378a945673423994b2c4a18bb733b3ac |
|
BLAKE2b-256 | 09b1cc750c29e8cb6af50e1ccdc40f87a81c62bb83e5947ff5cd2733a231fb5c |
File details
Details for the file scikit_landmark-0.1.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 40.6 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 305fbe25489138d852f76f2c2812a750542b23a506e37e924b197eeeb5bf08ad |
|
MD5 | fb79ef33bc64e85dea4473bd8b937b43 |
|
BLAKE2b-256 | 5b508e987715ba34d095849a7215bb35a4e9fb36c5050215bae7a9116dba7b1e |
File details
Details for the file scikit_landmark-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 47.2 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7e9110b687a08b59b5acbd673297b86fe80fabd3a921fc3d0a02548588aaea0 |
|
MD5 | 4984f8b53f940a0b689e66855ced2d84 |
|
BLAKE2b-256 | 759941512ae28b992918b8480775d86e1470072095f8e82a65f6396dff116561 |
File details
Details for the file scikit_landmark-0.1.1-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 36.6 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 555d48f59aca65df23dae648957375d604a871f44f448c2f6ef5e2009103a778 |
|
MD5 | 61faa33800d4e4d3c0fac1b6af470de9 |
|
BLAKE2b-256 | c9db1454490e8b855b289557ba4c23f091f34329a8cc6e18971b1205d71d3e88 |
File details
Details for the file scikit_landmark-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 37.5 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97a05a21191684a2b299eb729548c1c4d145fcec7c94166d693c46769f7e0550 |
|
MD5 | 11e17bcc4bfa97ec07559118834cacf5 |
|
BLAKE2b-256 | 5349e1189f2b12843b1f99cba860d290f9169cb44f037ebe04a7eef037d51914 |
File details
Details for the file scikit_landmark-0.1.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 40.5 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a430beb1affd5e13fc16b03c4b31ab05d7fdd2ea96f2a3d07220f6e038b0a96a |
|
MD5 | e69180265553f2f646174258605ec089 |
|
BLAKE2b-256 | e9a00511d5e14df93a0e764de7fa93858bc65a47211426b1cf7042bf71da16c4 |
File details
Details for the file scikit_landmark-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 47.2 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b1cf9596d878e02135eb9225a023cf9a1192aa8030501f20d92e3146a7a23d08 |
|
MD5 | 9819330f505bb8d4d79fefa93edf2946 |
|
BLAKE2b-256 | 987fa387c52512fca129b973e442ec3032f043252fa054df98f4a5a73e24fce8 |
File details
Details for the file scikit_landmark-0.1.1-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 36.5 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c49370246bebf6b8a956d1c5443eb187a73b5b268420ded1f0ebaf9124e55f2 |
|
MD5 | 802a8a374ccc1bcd12dcea3c02c31ab7 |
|
BLAKE2b-256 | da3383c57c08f08ee4186cd3fa687c71ff327d6facb9fc0d2e7e475d947063c3 |
File details
Details for the file scikit_landmark-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: scikit_landmark-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 37.5 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d1d4fad5f340a1fe3bfa9146fdfbc820087cf6b2edc2220cda6ab6349c0e417 |
|
MD5 | 43bd079f3f5448c177d48b2bfa26bf23 |
|
BLAKE2b-256 | 4425ff3f4097632215d6fe02c7266fe1b90f9fe111262a8c157be5675dd31482 |