Skip to main content

Custom Pipeline Transformers for Sklearn Pipelines

Project description

Helpful Package For Custom Transformers To Use In Sklearn Pipelines

Installation

pip install scikit-learn-pipeline-utils

Quick Start

from sklearn_pipeline_utils import DFSelector
from sklearn.pipeline import Pipeline
import pandas as pd

df = pd.DataFrame({
    "col1": ["a", "b", "a"],
    "col2": [1, 2, 3]
})

pipeline = Pipeline([
    ("dfselectcol1", DFSelector("col1"))
    ])

print(pipeline.transform(df))
'''
expected result:
  col1
0    a
1    b
2    a
'''

Dataframe Transformers List

  1. DFSelector
  2. DFObjectSelector
  3. DFFeatureUnion
  4. DFImputer
  5. DFImputerMostFrequent
  6. DFOrdinalEncoder
  7. DFStandardScaler

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-pipeline-utils-0.0.4.tar.gz (2.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file scikit-learn-pipeline-utils-0.0.4.tar.gz.

File metadata

  • Download URL: scikit-learn-pipeline-utils-0.0.4.tar.gz
  • Upload date:
  • Size: 2.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.0

File hashes

Hashes for scikit-learn-pipeline-utils-0.0.4.tar.gz
Algorithm Hash digest
SHA256 7a3555e9d35289f9e5c7e657732481f6de88b179e13a8ffcb8e0ba4f4b3ca708
MD5 7f0a243c5c211910eb63758872743545
BLAKE2b-256 d3a9acb7c8aa2b0c4ed0137f01e785963c27007a35aac8f1856d244912dfe03d

See more details on using hashes here.

File details

Details for the file scikit_learn_pipeline_utils-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: scikit_learn_pipeline_utils-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 3.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.0

File hashes

Hashes for scikit_learn_pipeline_utils-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4bdcad4818ef390c2ab37a909c90868acf63f59002ed499a2d00e10bff187ff9
MD5 baa190d5b4a988ea25475ec9d9cb6ff3
BLAKE2b-256 a19cd2203af233cca3decebc6837208e2b6d5201d951c71c51fb22abfc2af612

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page