Skip to main content

Custom Pipeline Transformers for Sklearn Pipelines

Project description

Helpful Package For Custom Transformers To Use In Sklearn Pipelines

Installation

pip install scikit-learn-pipeline-utils

Quick Start

from sklearn_pipeline_utils import DFSelector
from sklearn.pipeline import Pipeline
import pandas as pd

df = pd.DataFrame({
    "col1": ["a", "b", "a"],
    "col2": [1, 2, 3]
})

pipeline = Pipeline([
    ("dfselectcol1", DFSelector("col1"))
    ])

print(pipeline.transform(df))
'''
expected result:
  col1
0    a
1    b
2    a
'''

Dataframe Transformers List

  1. DFSelector
  2. DFObjectSelector
  3. DFFeatureUnion
  4. DFImputer
  5. DFImputerMostFrequent
  6. DFOrdinalEncoder
  7. DFStandardScaler

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-pipeline-utils-0.0.5.tar.gz (2.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file scikit-learn-pipeline-utils-0.0.5.tar.gz.

File metadata

  • Download URL: scikit-learn-pipeline-utils-0.0.5.tar.gz
  • Upload date:
  • Size: 2.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.0

File hashes

Hashes for scikit-learn-pipeline-utils-0.0.5.tar.gz
Algorithm Hash digest
SHA256 aa48e3ec25f9dadeb295aaaa3e9fb6037680b7ea18815266423ae3d85953508c
MD5 c2edd5f53a6fe56f2f676d44bcd73266
BLAKE2b-256 e7db463e9075a09a773c68751ce8e5fe63ab8ffed09bcd66b88ce28765f6138d

See more details on using hashes here.

File details

Details for the file scikit_learn_pipeline_utils-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: scikit_learn_pipeline_utils-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 3.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.0

File hashes

Hashes for scikit_learn_pipeline_utils-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 fc130ac9f665d7277e7bead5129f97111f6d80433c959c974515bf64032d1d90
MD5 6bd44e514fcf94ac4294c0651f49d6e9
BLAKE2b-256 87d1f70215fd78ed21503ba4eff4eceb6b13307747662edc21f2bdeba8ae4ef8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page