Skip to main content

scikit-learn estimator wrapper for time series problems

Project description

A scikit-learn estimator which wraps another estimator to provide facilities for time series problems where previous predictions are used as features.

Description

When calling model.fit(X,y), y with time lag 1 is appended to X before fitting the model. When calling model.predict(X), for each sample in X, the prediction uses the previous known value for y (either true or predicted) as an additional feature.

Usage

This estimator implements the standard estimator API. As such, it should play nice with other scikit-learn objects

Example of wrapping an existing estimator:

>>> from sklearn.linear_model import LinearRegression
    from progestimator.prog_regression import ProgressiveRegression

    y = np.array([[1.0], [3.0], [4.0], [7.0], [15.0], [31.0]])
    X = np.ones(([1.0], [1.0], [1.0], [1.0], [1.0], [1.0]])
    model = ProgressiveRegression(LinearRegression()) 
    model.fit(X,y)

>>> model.predict(([1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]))

array([[  64.98224852],
       [ 137.08896047],
       [ 290.09172322],
       [ 614.74728963],
       [1303.63182285],
       [2765.37143003]])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-progestimator-0.1.0.tar.gz (3.6 kB view details)

Uploaded Source

File details

Details for the file scikit-learn-progestimator-0.1.0.tar.gz.

File metadata

  • Download URL: scikit-learn-progestimator-0.1.0.tar.gz
  • Upload date:
  • Size: 3.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for scikit-learn-progestimator-0.1.0.tar.gz
Algorithm Hash digest
SHA256 37a6dfe10b84dfdd69d0df38dd3b6e54edd654efa1abb2030f915e15d36e04e1
MD5 3208734efef362eed799e862fc204125
BLAKE2b-256 0e7d401cdda8c4b9bbd6cfb00823f0f41ee80c1adecb765bad2f148585e3e6fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page