scikit-learn estimator wrapper for time series problems
Project description
A scikit-learn estimator which wraps another estimator to provide facilities for time series problems where previous predictions are used as features.
Description
When calling model.fit(X,y)
, y
with time lag 1 is appended to X
before fitting the model.
When calling model.predict(X)
, for each sample in X
, the prediction uses the previous known value for y
(either true or predicted) as an additional feature.
Usage
This estimator implements the standard estimator
API. As
such, it should play nice with other scikit-learn objects
Example of wrapping an existing estimator:
>>> from sklearn.linear_model import LinearRegression
from progestimator.prog_regression import ProgressiveRegression
y = np.array([[1.0], [3.0], [4.0], [7.0], [15.0], [31.0]])
X = np.ones(([1.0], [1.0], [1.0], [1.0], [1.0], [1.0]])
model = ProgressiveRegression(LinearRegression())
model.fit(X,y)
>>> model.predict(([1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]))
array([[ 64.98224852],
[ 137.08896047],
[ 290.09172322],
[ 614.74728963],
[1303.63182285],
[2765.37143003]])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file scikit-learn-progestimator-0.1.0.tar.gz
.
File metadata
- Download URL: scikit-learn-progestimator-0.1.0.tar.gz
- Upload date:
- Size: 3.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0.post20200518 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37a6dfe10b84dfdd69d0df38dd3b6e54edd654efa1abb2030f915e15d36e04e1 |
|
MD5 | 3208734efef362eed799e862fc204125 |
|
BLAKE2b-256 | 0e7d401cdda8c4b9bbd6cfb00823f0f41ee80c1adecb765bad2f148585e3e6fa |