Skip to main content

A set of python modules for machine learning and data mining

Project description

Travis AppVeyor Coveralls CircleCI Python27 Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 2.6 or >= 3.3)

  • NumPy (>= 1.6.1)

  • SciPy (>= 0.9)

scikit-learn also uses CBLAS, the C interface to the Basic Linear Algebra Subprograms library. scikit-learn comes with a reference implementation, but the system CBLAS will be detected by the build system and used if present. CBLAS exists in many implementations; see Linear algebra libraries for known issues.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Setting up a development environment

Quick tutorial on how to go about setting up your environment to contribute to scikit-learn: https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

nosetests -v sklearn

Under Windows, it is recommended to use the following command (adjust the path to the python.exe program) as using the nosetests.exe program can badly interact with tests that use multiprocessing:

C:\Python34\python.exe -c "import nose; nose.main()" -v sklearn

See the web page http://scikit-learn.org/stable/install.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the AUTHORS.rst file for a complete list of contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.18.1.tar.gz (8.9 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.18.1-cp36-cp36m-manylinux1_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.18.1-cp36-cp36m-manylinux1_i686.whl (11.1 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.18.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.18.1-cp35-cp35m-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

scikit_learn-0.18.1-cp35-cp35m-win32.whl (3.7 MB view details)

Uploaded CPython 3.5m Windows x86

scikit_learn-0.18.1-cp35-cp35m-manylinux1_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.18.1-cp35-cp35m-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.18.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.18.1-cp34-cp34m-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.4m Windows x86-64

scikit_learn-0.18.1-cp34-cp34m-win32.whl (3.8 MB view details)

Uploaded CPython 3.4m Windows x86

scikit_learn-0.18.1-cp34-cp34m-manylinux1_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.18.1-cp34-cp34m-manylinux1_i686.whl (11.1 MB view details)

Uploaded CPython 3.4m

scikit_learn-0.18.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit_learn-0.18.1-cp33-cp33m-manylinux1_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.3m

scikit_learn-0.18.1-cp33-cp33m-manylinux1_i686.whl (10.5 MB view details)

Uploaded CPython 3.3m

scikit_learn-0.18.1-cp27-cp27mu-manylinux1_x86_64.whl (11.6 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.18.1-cp27-cp27mu-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 2.7mu

scikit_learn-0.18.1-cp27-cp27m-win_amd64.whl (4.3 MB view details)

Uploaded CPython 2.7m Windows x86-64

scikit_learn-0.18.1-cp27-cp27m-win32.whl (3.9 MB view details)

Uploaded CPython 2.7m Windows x86

scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.whl (11.7 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.18.1-cp27-cp27m-manylinux1_i686.whl (10.9 MB view details)

Uploaded CPython 2.7m

scikit_learn-0.18.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.5 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scikit-learn-0.18.1.win-amd64-py3.5.exe (4.7 MB view details)

Uploaded Source

scikit-learn-0.18.1.win-amd64-py2.7.exe (4.5 MB view details)

Uploaded Source

scikit-learn-0.18.1.win32-py3.5.exe (4.2 MB view details)

Uploaded Source

scikit-learn-0.18.1.win32-py2.7.exe (4.1 MB view details)

Uploaded Source

File details

Details for the file scikit-learn-0.18.1.tar.gz.

File metadata

File hashes

Hashes for scikit-learn-0.18.1.tar.gz
Algorithm Hash digest
SHA256 1eddfc27bb37597a5d514de1299981758e660e0af56981c0bfdf462c9568a60c
MD5 6b0ff1eaa5010043895dd63d1e3c60c9
BLAKE2b-256 f1dc5fb2834511eef6f86e17b6ec41c0c7a60733f79633827e75aaa55029a9fa

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dfe8fec9d8f91cbe890cc3c79a153bc8b8220c479090167b85835384e6f80423
MD5 8e5c9d9cca575ffe164398fcb281e62e
BLAKE2b-256 aed2efa7f8bef195c459a527edc58bf863bd44fde727630486cb8256e9a5a326

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6f84419a018227f815e6d7054d0b48a471e0ac4823f45465cfa8fa25dba9666b
MD5 8debc865501bdae115932b2fd736fbfe
BLAKE2b-256 5d477a2ebc856798a67c3e499125863abed7f5f24d70d97ae2a58122c0b7cb3f

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b10c7f586abe1f5bbf2cabdfa6f3ab8e559cd9fac516fdff71e5bd2997699265
MD5 7e8e1ecc4e76aacbf9334e47f37e32ea
BLAKE2b-256 5788921203718cf38088e7a00bb4459d52d674245e87c95dbc45491b1bc296e1

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 8f86b498293386d0ac99522de7895b1261750f80dfffd99285027eed308e9b71
MD5 58b7d88b2e25ad1d5a1150412782405b
BLAKE2b-256 a87f6cb4f9e12125fdd82d9a83d5d8b09a961ec7ac80cf0ada63f726269c4de5

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 09cb373712d70866d9a9910ac0e861dfc83b4129aec2fa79a7815327a6ab262d
MD5 d03ab7ce960f0607d8f72e24922a4fdb
BLAKE2b-256 0ec4017051d6854084a0b072e09edd5beac125522ac2c1e610d8b56f838517ea

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c48a8bdcf19f2a4fd0ed2889b4368a2c559ddc92c811682d82e92ce53a9f6869
MD5 0405e5a1329ce3873392da1b32e1ab53
BLAKE2b-256 a6b98acd3dee9558504c433a24bcb0197230d5993e1b896e94d55838bc909b1e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e55893c50d17a24b0aa5e01e85b58f0ad2c87b51266f62908301537b13ca2b90
MD5 efd727cf525a38576caea317b5f206c6
BLAKE2b-256 a303224bec5cf3d82cc1069ae01bd124498be0b8054fa9d7be2ffef294b4878a

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d38ca40b01336bf7bdff17beec6f44f1ce124abb6cdcc1845b166c9e3bdd52d4
MD5 2c8e7c412e8ac72d4cd53c1484d911ff
BLAKE2b-256 395ffe0566a173f773771159455797b7dae4b6bc7f7ea9bef63557dcb048f936

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 640627ecd0dd63b6f7e2070311879da74308dae238a22e04100bee2f67555ba8
MD5 2800b40d81f1ca5281e3ef3b6da48b7f
BLAKE2b-256 385edb3f514e56c47827d0885af9a2b143e17d9ab40c280f1e064ef7a9322136

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 e82cb21b8ad1fe85f4499cb448953561e8d6d9ccaec02f47fa8b57bce03620b3
MD5 f2bf26696b6c45f50172f50fd271f29a
BLAKE2b-256 d7d0fbeeed35d5ec00cfd12252a6c7d0eeac7efbe5903afca2ab87f6c607cbd6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 78e5e82b3cbfea799998aae8bbfccd2ccd91126304443973f0e865d9264f253f
MD5 0e718dffbd1bb13ed433f91dc6ebc1a9
BLAKE2b-256 8a47b5aa0abadde24744fcdbb1f574e8b01c7a703dd094f28cc13d19241a9a1e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d23035c104aac4afdb2361f9ae3fba92fa52c4880887cde8859cfd62b9e5e0f0
MD5 1dcb3f45198ecad1f8214f6cbc648301
BLAKE2b-256 f4e8c63d411f7edacc4b38f345493feef59e87ee29ac9bff5198e1766c3fd9db

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 650d2d8d4b1f74fd515d23e19c5a1f6afb4b13f4ed465457d9bdf4c10f87aa6c
MD5 76e26d83f2a1c70bb7b4f2d9f2adc772
BLAKE2b-256 c6884bb524f1cb98cd63ab6ec148a66d57b4cd8ee9f33b7a6eb50e032e3bc2ff

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5f2ad07a0d4d1d2ab91d2ba03b05fdc8b6ff598534218b2106d624ea81e82e6f
MD5 35e03c7203b1eb37f961f03f17586579
BLAKE2b-256 1abd2cfb593f258efd609120b4b8d1a1d6f6feca84f2ce713d3c7ab2e7e6da90

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp33-cp33m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp33-cp33m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1fa6889b8a5f55d66c867b61f0f5e12a11e1d9d7cc65136723db091c65dca5ef
MD5 ad8fa31a62d3ccf18a9ffd7bda950318
BLAKE2b-256 4c575e0a52595c766ad45d3154edc729e01ef840eb8167429936d32c41f187de

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f3844e32538a6d3c0ed323bc9d488785d082a56b57fafc55d476210e727ea46f
MD5 05871a365a60dce2a1e1cabc101df5b6
BLAKE2b-256 ca0fbfadd2f0ef390c6d6d88624823dfa63479b4e68820de94a960d1a14c585d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4d4547ffdc8444eee10cabd475b27d8bf7a1d7cf94d3ae82bcffa59088c8caf3
MD5 85be194f0624f59e81ec0e7a102c75ac
BLAKE2b-256 c6a7e20d396a2f7bec9e7684139b12cf8359b4f46d6c0db796ec34959e180b79

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 c5820acaeced60c213f10125d73c8ee22702ce276e3f65636def4fd413fd63dd
MD5 1592a5173cebea0e41ac68445aa7dce9
BLAKE2b-256 43d9943008a1eadfde32c6231ef4a7449d234acdd5b0520b195c30318baad6c5

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 2158c55c081f5ad324a66d641dfd7cd876a741dfd3bfa67a0e8d40697f29b3ee
MD5 7be01c15c9ecc6e4a28d40ad54f94d39
BLAKE2b-256 412311ebabe3cf0e4b8fd5627c60f82a27cba36ccad7bdd113f93a6dcdfb141e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fa9dc5951675dce12db93d242fe20d371265d1461e1449c610f9f79bfcc6b9f3
MD5 b068bde57f00d285cc89eb0b8615fcae
BLAKE2b-256 cadda18dba8ab879b13b43c3838a25887585a45101f4bffa398e1883e1e3d395

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5c567e19d5d7303ce733f922af9dfc3d9565c3c6480e41ab6841792620d84b4b
MD5 74f232f7d35a2e49e510d24b2335f197
BLAKE2b-256 27a44a7e23dab195d2d4fb01513d02dd72b73d13788238cbc82eac9a17c4db80

See more details on using hashes here.

File details

Details for the file scikit_learn-0.18.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.18.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 144ee9fd2dbe4a9d2839c78cddcca186161f7e279e68efc7fbd6a06c96bb0f5b
MD5 081cfefc9ede112e553c8e0c33261965
BLAKE2b-256 4388e61eef6030d096d8cd4d5eb6a2cdb06ad1ece57c3fb6744c47f1b4a1eae5

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.1.win-amd64-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.1.win-amd64-py3.5.exe
Algorithm Hash digest
SHA256 97f40ced7a598b2d37354f7019007ca8578203ebd8a646fa4428af7de107065f
MD5 2a66e5f3196e687337647b67ea378f04
BLAKE2b-256 f693ca9b592335c134354eafa388e92b240512844db73c0f554a7b42c0120b6c

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.1.win-amd64-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.1.win-amd64-py2.7.exe
Algorithm Hash digest
SHA256 1f09b39c683198ae37c41e7ea3534dfb996b6aaebd0fc89b397536facde9aab3
MD5 a8b6e83b7a14772600345abc2cfd3886
BLAKE2b-256 35ffaac94d90d025504adf306d043c0375229774982a322c6e4b27eaebc84a7d

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.1.win32-py3.5.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.1.win32-py3.5.exe
Algorithm Hash digest
SHA256 43649562e5f9adbd03d42337e4af70b0884b4096906110325fb8e2332d659a83
MD5 9ab93d1262bc414415f2fbb47c022307
BLAKE2b-256 117dcd7c0174010385cb7c15ffb317957a63800fada0f625a6716c78c8a2c176

See more details on using hashes here.

File details

Details for the file scikit-learn-0.18.1.win32-py2.7.exe.

File metadata

File hashes

Hashes for scikit-learn-0.18.1.win32-py2.7.exe
Algorithm Hash digest
SHA256 d0916c67cdd5e8cdaa5f21a08fe0a1a7dd4e919f86c28110568201a53c68a4a5
MD5 5713da634a697395f17c75d9593e5cb3
BLAKE2b-256 28dcb1ff2015ffee05370116956e61bbf37eba906295557c4e9fd11988159916

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page