Skip to main content

A set of Python modules for Label Ranking problems.

Project description

Integration Linting Codecov PyPI Python PEP8

scikit-lr

scikit-lr is a Python module integrating Machine Learning algorithms for Label Ranking problems and distributed under MIT license.

Installation

Dependencies

scikit-lr requires:

* Python>=3.6
* Numpy>=1.15.2
* SciPy>=1.1.0

Linux or Mac OS X operating systems. Windows is not currently supported.

User installation

The easiest way to install scikit-lr is using pip package:

pip install -U scikit-lr

Development

Feel free to contribute to the package, but be sure that the standards are followed.

Source code

The latest sources can be obtained with the command:

git clone https://github.com/alfaro96/scikit-lr.git

Setting up a development environment

To setup the development environment, it is strongly recommended to use docker tools (see https://github.com/alfaro96/docker-scikit-lr for details).

Alternatively, one can use Python virtual environments (see https://docs.python.org/3/library/venv.html for details).

Testing

After installation the test suite can be executed from outside the source directory, with (you will need to have pytest>=4.6.4 installed):

pytest sklr

Authors

* Alfaro Jiménez, Juan Carlos
* Aledo Sánchez, Juan Ángel
* Gámez Martín, José Antonio

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

scikit_lr-0.2.0-cp37-cp37m-manylinux1_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.7m

scikit_lr-0.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

scikit_lr-0.2.0-cp36-cp36m-manylinux1_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.6m

scikit_lr-0.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file scikit_lr-0.2.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_lr-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.5.6

File hashes

Hashes for scikit_lr-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f7482db225077a483057e6190bf3dda1a57919d6f431eb3dcd9dae478e7a92e8
MD5 d585cdfa8c5bc6351da3fd4a67bc3ce2
BLAKE2b-256 61b088b8b94431c0bfd15aced1346289434a6a7012f6764623f20d8b0b932a33

See more details on using hashes here.

File details

Details for the file scikit_lr-0.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_lr-0.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 11ecced9095f931a5b5718e6afcd30e9192e785ef2657570e3e74d336835a2f1
MD5 558a1375c4d01112efecd0eef298933f
BLAKE2b-256 fd11ad6cff65b82ab518a5940a61cebfa5dcbcfd3ebca0134e37bfb3c984dc3d

See more details on using hashes here.

File details

Details for the file scikit_lr-0.2.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_lr-0.2.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.5.6

File hashes

Hashes for scikit_lr-0.2.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 396b5100c548caf1ca3138fcfcce69cf1b59fe8c4c16b713046203880d5088f5
MD5 df767005eb213078aa66ee23816adb17
BLAKE2b-256 2c855f7e529896aac3c23f2e9497cb38a50078236da709ff4fad1662f682381a

See more details on using hashes here.

File details

Details for the file scikit_lr-0.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_lr-0.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 4f6e0cb9d66900fe2aa3ac3ff49adb255f2622dccd859f667d0f76704be098ba
MD5 133e663042ce95f35d62035aef58dcf5
BLAKE2b-256 e7db20f4e90671b388f165531012f528a7293ad31a1a52206239d85da729a472

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page