A set of Python modules for Label Ranking problems.
Project description
scikit-lr
scikit-lr
is a Python module integrating Machine Learning algorithms for Label Ranking problems and distributed under MIT license.
Installation
Dependencies
scikit-lr
requires:
* Python>=3.6
* Numpy>=1.15.2
* SciPy>=1.1.0
Linux
or Mac OS X
operating systems. Windows
is not currently supported.
User installation
The easiest way to install scikit-lr
is using pip
package:
pip install -U scikit-lr
Development
Feel free to contribute to the package, but be sure that the standards are followed.
Source code
The latest sources can be obtained with the command:
git clone https://github.com/alfaro96/scikit-lr.git
Setting up a development environment
To setup the development environment, it is strongly recommended to use docker
tools (see [https://github.com/alfaro96/docker-scikit-lr])
Alternatively, one can use Python
virtual environments (see [https://docs.python.org/3/library/venv.html] for details).
Testing
After installation the test suite can be executed from outside the source directory, with (you will need to have pytest>=4.6.4
installed):
pytest sklr
Authors
* Alfaro Jiménez, Juan Carlos
* Aledo Sánchez, Juan Ángel
* Gámez Martín, José Antonio
License
This project is licensed under the MIT License - see the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size scikit_lr-0.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size scikit_lr-0.1.0-cp36-cp36m-manylinux1_x86_64.whl (9.7 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size scikit_lr-0.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size scikit_lr-0.1.0-cp37-cp37m-manylinux1_x86_64.whl (9.7 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Hashes for scikit_lr-0.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | caefe1ed7725e044449789cc3a39930e371ca4273a6830876f24771dbfcaef75 |
|
MD5 | f05f74ea20a0a86cd15a037be53b4dbf |
|
BLAKE2-256 | 161caf10bb4b364385e389adf4c93a2548509697c25f626fb63f8e62edc3ae7c |
Hashes for scikit_lr-0.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8e70d4f3730d2e7fbbcfc8a144f6e5bd9d040cfaf95306ae50c2095896f46abe |
|
MD5 | 73021a235d87ae812527b063b6a33f42 |
|
BLAKE2-256 | bf46abba7008bfb702aff073259f7864cc163366af0fdda9cf9dfba932575689 |
Hashes for scikit_lr-0.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1918e0cc3a3a5861d7282ce4a3b577dd0ce2f8a12c25dd8937e2a716d5369bfd |
|
MD5 | 82c9d41e0ba01dbf44640b77cd41c927 |
|
BLAKE2-256 | 4953e4a30c1db1c940323662c6a3c41c168d2b193f1e99ef73f93c0fc3133919 |
Hashes for scikit_lr-0.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30155d27fea884b71b5f3eec02354238ecd0f9333a1a5275091b144c3d861fa3 |
|
MD5 | 90bcfffeb0c4fc0d0f857c75288997de |
|
BLAKE2-256 | b8673d64206e854f56996406505ef617ab4befc39eaa5b6a7d62867d116ce5fa |