Skip to main content

Library for Multi-criteria Decision Aid Methods

Project description

A python library made to provide multi-criteria decision aid for developers and operacional researchers.

Module for Decision-making Under Uncertainty (DMUU)

dmuu: Module for Decision-making Under Uncertainty

criteria:

  • maximax

  • maximin

  • laplace

  • minimax-regret

  • hurwicz

functions:

  • dataframe(alt_data, alt_labels=[], state_labels=[])

  • calc(dmuu_df, dmuu_criteria_list=[], hurwicz_coeficient=-1)

  • decision_making(dmuu_df, dmuu_criteria_list=[], hurwicz_coeficient=-1)

Example

from scikitmcda import dmuu

df = dmuu.dataframe([[5000, 2000, 100],
                     [50, 50, 500]],
                    ["ALT_A", "ALT_B"],
                    ["STATE A", "STATE B", "STATE C"])

df
+----+----------------+-----------+-----------+-----------+
|    | alternatives   |   STATE A |   STATE B |   STATE C |
|----+----------------+-----------+-----------+-----------|
|  0 | ALT_A          |      5000 |      2000 |       100 |
|  1 | ALT_B          |        50 |        50 |       500 |
+----+----------------+-----------+-----------+-----------+

df_calc = dmuu.calc(df, ["minimax-regret", "hurwicz"], 0.7)

df_calc
+----+----------------+-----------+-----------+-----------+------------------+------------------+
|    | alternatives   |   STATE A |   STATE B |   STATE C | minimax-regret   | hurwicz          |
|----+----------------+-----------+-----------+-----------+------------------+------------------|
|  0 | ALT_A          |      5000 |      2000 |       100 | (400, 1)         | (3530.0, 1, 0.7) |
|  1 | ALT_B          |        50 |        50 |       500 | (4950, 0)        | (365.0, 0, 0.7)  |
+----+----------------+-----------+-----------+-----------+------------------+------------------+

result = dmuu.decision_making(df)

result

[{'alternative': 'ALT_A',
  'criteria': 'maximax',
  'hurwicz_coeficient': '',
  'index': 0,
  'result': {'ALT_A': 5000, 'ALT_B': 500},
  'type_dm': 'DMUU',
  'value': 5000},
...
{'alternative': 'ALT_A',
  'criteria': 'hurwicz',
  'hurwicz_coeficient': 0.5,
  'index': 0,
  'result': {'ALT_A': 2550.0, 'ALT_B': 275.0},
  'type_dm': 'DMUU',
  'value': 2550.0}]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-mcda-0.0.8.tar.gz (4.4 kB view details)

Uploaded Source

File details

Details for the file scikit-mcda-0.0.8.tar.gz.

File metadata

  • Download URL: scikit-mcda-0.0.8.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for scikit-mcda-0.0.8.tar.gz
Algorithm Hash digest
SHA256 edddb97bd2e0078607066d7913a589090b79953b697fb9013fcc28b724eae36a
MD5 479cf01fd16ceba3e2c204eab6cca4e1
BLAKE2b-256 df0c1f659cbc8fcf98c7eb6dd11e67cd629bab0f011add16488f3ab737ad41d8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page