Library for Multi-criteria Decision Aid Methods
Project description
A python library made to provide multi-criteria decision aid for developers and operacional researchers.
Module for Decision-making Under Uncertainty (DMUU)
dmuu: Module for Decision-making Under Uncertainty
criteria:
maximax
maximin
laplace
minimax-regret
hurwicz
functions:
dataframe(alt_data, alt_labels=[], state_labels=[])
calc(dmuu_df, dmuu_criteria_list=[], hurwicz_coeficient=-1)
decision_making(dmuu_df, dmuu_criteria_list=[], hurwicz_coeficient=-1)
Example
from scikitmcda import dmuu df = dmuu.dataframe([[5000, 2000, 100], [50, 50, 500]], ["ALT_A", "ALT_B"], ["STATE A", "STATE B", "STATE C"]) df +----+----------------+-----------+-----------+-----------+ | | alternatives | STATE A | STATE B | STATE C | |----+----------------+-----------+-----------+-----------| | 0 | ALT_A | 5000 | 2000 | 100 | | 1 | ALT_B | 50 | 50 | 500 | +----+----------------+-----------+-----------+-----------+ df_calc = dmuu.calc(df, ["minimax-regret", "hurwicz"], 0.7) df_calc +----+----------------+-----------+-----------+-----------+------------------+------------------+ | | alternatives | STATE A | STATE B | STATE C | minimax-regret | hurwicz | |----+----------------+-----------+-----------+-----------+------------------+------------------| | 0 | ALT_A | 5000 | 2000 | 100 | (400, 1) | (3530.0, 1, 0.7) | | 1 | ALT_B | 50 | 50 | 500 | (4950, 0) | (365.0, 0, 0.7) | +----+----------------+-----------+-----------+-----------+------------------+------------------+ result = dmuu.decision_making(df) result [{'alternative': 'ALT_A', 'criteria': 'maximax', 'hurwicz_coeficient': '', 'index': 0, 'result': {'ALT_A': 5000, 'ALT_B': 500}, 'type_dm': 'DMUU', 'value': 5000}, ... {'alternative': 'ALT_A', 'criteria': 'hurwicz', 'hurwicz_coeficient': 0.5, 'index': 0, 'result': {'ALT_A': 2550.0, 'ALT_B': 275.0}, 'type_dm': 'DMUU', 'value': 2550.0}]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scikit-mcda-0.0.8.tar.gz
(4.4 kB
view details)
File details
Details for the file scikit-mcda-0.0.8.tar.gz
.
File metadata
- Download URL: scikit-mcda-0.0.8.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | edddb97bd2e0078607066d7913a589090b79953b697fb9013fcc28b724eae36a |
|
MD5 | 479cf01fd16ceba3e2c204eab6cca4e1 |
|
BLAKE2b-256 | df0c1f659cbc8fcf98c7eb6dd11e67cd629bab0f011add16488f3ab737ad41d8 |