Skip to main content

Minimal Learning Machine implementation using the scikit-learn API

Project description

scikit-mlm

GitHub PyPI GitHub commit activity GitHub last commit DOI

scikit-mlm is a Python module implementing the Minimal Learning Machine (MLM) machine learning technique using the scikit-learn API.

instalation

the scikit-mlm package is available in PyPI. to install, simply type the following command:

pip install scikit-mlm

basic usage

example of classification with the nearest neighbor MLM classifier:

from skmlm import NN_MLM
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.datasets import load_iris

# load dataset
dataset = load_iris()

clf = make_pipeline(MinMaxScaler(), NN_MLM(rp_number=20))
scores = cross_val_score(clf, dataset.data, dataset.target, cv=10, scoring='accuracy')

print('AVG = %.3f, STD = %.3f' % (scores.mean(), scores.std()))

how to cite scikit-mlm

if you use scikit-mlm in your paper, please cite it in your publication.

@misc{scikit-mlm,
    author       = "Madson Luiz Dantas Dias",
    year         = "2019",
    title        = "scikit-mlm: An implementation of {MLM} for scikit-learn framework",
    url          = "https://github.com/omadson/scikit-mlm",
    doi          = "10.5281/zenodo.2875802",
    institution  = "Federal University of Cear\'{a}, Department of Computer Science" 
}

contributing

this project is open for contributions. here are some of the ways for you to contribute:

  • bug reports/fix
  • features requests
  • use-case demonstrations

to make a contribution, just fork this repository, push the changes in your fork, open up an issue, and make a pull request!

list of implemented technics

future improvements

list of methods that will be implemented in the next releases:

contributors

acknowledgement

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for scikit-mlm, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size scikit_mlm-0.1.1-py2-none-any.whl (8.9 kB) File type Wheel Python version py2 Upload date Hashes View hashes
Filename, size scikit-mlm-0.1.1.tar.gz (7.4 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page