Minimal path extraction using the fast marching method
Project description
scikit-mpe
scikit-mpe is a package for extracting a minimal path in N-dimensional Euclidean space (on regular Cartesian grids) using the fast marching method.
Quickstart
Installing
pip install -U scikit-mpe
Usage
Here is a simple example that demonstrates how to extract the path passing through the retina vessels.
from matplotlib import pyplot as plt
from skimage.data import retina
from skimage.color import rgb2gray
from skimage.transform import rescale
from skimage.filters import sato
from skmpe import mpe
image = rescale(rgb2gray(retina()), 0.5)
speed_image = sato(image)
start_point = (76, 388)
end_point = (611, 442)
way_points = [(330, 98), (554, 203)]
path_info = mpe(speed_image, start_point, end_point, way_points)
px, py = path_info.path[:, 1], path_info.path[:, 0]
plt.imshow(image, cmap='gray')
plt.plot(px, py, '-r')
plt.plot(*start_point[::-1], 'oy')
plt.plot(*end_point[::-1], 'og')
for p in way_points:
plt.plot(*p[::-1], 'ob')
plt.show()
Documentation
The full documentation can be found at scikit-mpe.readthedocs.io
References
- Fast Marching Methods: A boundary value formulation
- Level Set Methods and Fast Marching Methods
- scikit-fmm - Python implementation of the fast marching method
- ITKMinimalPathExtraction - ITK based C++ implementation of MPE
License
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scikit-mpe-0.2.4.tar.gz
(12.8 kB
view details)
Built Distribution
File details
Details for the file scikit-mpe-0.2.4.tar.gz
.
File metadata
- Download URL: scikit-mpe-0.2.4.tar.gz
- Upload date:
- Size: 12.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4a10f12fa490cca78b06b32d28691d6b24ce7e9cf5533e01a3a7ac9f6d79ff3 |
|
MD5 | de34cc6828c095920ed5f5100295af68 |
|
BLAKE2b-256 | ec6af93f4e64be59bf59fd8dad529c51190f452acf47f98419283acb6bbbbdf4 |
File details
Details for the file scikit_mpe-0.2.4-py3-none-any.whl
.
File metadata
- Download URL: scikit_mpe-0.2.4-py3-none-any.whl
- Upload date:
- Size: 13.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.4 CPython/3.9.0 Windows/10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d21aeab5acb1439fc8923c4c4cbb0a6d182d84db10f366a7811475c69e8c5ff |
|
MD5 | 1e96f2a1df4d8a846206bbcfac6f24d4 |
|
BLAKE2b-256 | 663192e21d348eb60d7a3dabc4572a0a8e8f5dbe8fc9c3c45dd5230fa3018c38 |