Skip to main content

Multiple point statistical (MPS) simulation

Project description

https://img.shields.io/pypi/v/scikit-mps.svg?style=flat-square https://img.shields.io/pypi/pyversions/scikit-mps.svg?style=flat-square https://img.shields.io/badge/license-MIT-blue.svg?style=flat-square https://colab.research.google.com/assets/colab-badge.svg

scikit-mps is a Python interface to MPSlib, https://github.com/ergosimulation/mpslib/, which is a C++ library for geostatistical multiple point simulation, with implementations of ‘SNESIM’, ‘ENESIM’, and ‘GENESIM’

It contains three modules:
  • mpslib: Interacts with MPSlib

  • eas: read and write EAS/GSLIB formatted files

  • trainingimages: Access to a number of trainingimages

import mpslib as mps
O=mps.mpslib(method='mps_snesim_tree')
O.run()
O.plot_reals()
O.plot_etype()

PyPI

<http://pypi.python.org/pypi/scikit-mps>

Requirements

  • Numpy >= 1.0.2

  • Matplotlib >= 1.0.2

  • MPSlib needs to be downloaded, installed, and in the system path (https://github.com/ergosimulation/mpslib/) [Any 11 C++11 compiler should work, such as gcc, MinGW, MSVC]

Installing

  • Via pip:

    pip install scikit-mps

optionally download and reinstall:

import mpslib as mps
O=mps.mpslib
O.compile_mpslib()
  • From source code

cd ROOT_OF_MPSLIB/python
pip install .
cd ROOT_OF_MPSLIB
make clean
make

If you wish to develop the scikit-mps package, then install it in editable developer mode using

pip install -e .

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page