Skip to main content

Multiple point statistical (MPS) simulation

Project description

https://img.shields.io/pypi/v/scikit-mps.svg?style=flat-square https://img.shields.io/pypi/pyversions/scikit-mps.svg?style=flat-square https://img.shields.io/badge/license-MIT-blue.svg?style=flat-square https://colab.research.google.com/assets/colab-badge.svg

scikit-mps is a Python interface to MPSlib, https://github.com/ergosimulation/mpslib/, which is a C++ library for geostatistical multiple point simulation, with implementations of ‘SNESIM’, ‘ENESIM’, and ‘GENESIM’

It contains three modules:
  • mpslib: Interacts with MPSlib

  • eas: read and write EAS/GSLIB formatted files

  • trainingimages: Access to a number of trainingimages

import mpslib as mps
O=mps.mpslib(method='mps_snesim_tree')
O.run()
O.plot_reals()
O.plot_etype()

PyPI

<http://pypi.python.org/pypi/scikit-mps>

Requirements

  • Numpy >= 1.0.2

  • Matplotlib >= 1.0.2

  • MPSlib needs to be downloaded, installed, and in the system path (https://github.com/ergosimulation/mpslib/) [Any 11 C++11 compiler should work, such as gcc, MinGW, MSVC]

Installing

  • Via pip:

    pip install scikit-mps

optionally download and reinstall:

import mpslib as mps
O=mps.mpslib
O.compile_mpslib()
  • From source code

cd ROOT_OF_MPSLIB/python
pip install .
cd ROOT_OF_MPSLIB
make clean
make

If you wish to develop the scikit-mps package, then install it in editable developer mode using

pip install -e .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-mps-0.6.0.tar.gz (5.1 MB view details)

Uploaded Source

Built Distribution

scikit_mps-0.6.0-py2.py3-none-any.whl (5.1 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit-mps-0.6.0.tar.gz.

File metadata

  • Download URL: scikit-mps-0.6.0.tar.gz
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scikit-mps-0.6.0.tar.gz
Algorithm Hash digest
SHA256 9dfe36080ad7f9ee5556877c34171128117e7bce21fc0f0dc30b70102efb659a
MD5 38e5102390fb5eccac74d5bc7615675f
BLAKE2b-256 9e2dd1e085bf376477a613318bc59d264e1ccc5a600b3122acc44496e854def8

See more details on using hashes here.

File details

Details for the file scikit_mps-0.6.0-py2.py3-none-any.whl.

File metadata

  • Download URL: scikit_mps-0.6.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scikit_mps-0.6.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5a35cceb2fd6019d2ab25745d36165ff0a5f6a422d51c2f3a74ba784caa303c2
MD5 8a44d852c9b839cab395f48fcab00e03
BLAKE2b-256 38e8331e91161e943d45f0de997b30b3447fbe16e5f608bdca9908ab703cdf41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page