Skip to main content

Multiple point statistical (MPS) simulation

Project description

https://img.shields.io/pypi/v/scikit-mps.svg?style=flat-square https://img.shields.io/pypi/pyversions/scikit-mps.svg?style=flat-square https://img.shields.io/badge/license-MIT-blue.svg?style=flat-square https://colab.research.google.com/assets/colab-badge.svg

scikit-mps is a Python interface to MPSlib, https://github.com/ergosimulation/mpslib/, which is a C++ library for geostatistical multiple point simulation, with implementations of ‘SNESIM’, ‘ENESIM’, and ‘GENESIM’

It contains three modules:
  • mpslib: Interacts with MPSlib

  • eas: read and write EAS/GSLIB formatted files

  • trainingimages: Access to a number of trainingimages

import mpslib as mps
O=mps.mpslib(method='mps_snesim_tree')
O.run()
O.plot_reals()
O.plot_etype()

PyPI

<http://pypi.python.org/pypi/scikit-mps>

Requirements

  • Numpy >= 1.0.2

  • Matplotlib >= 1.0.2

  • MPSlib needs to be downloaded, installed, and in the system path (https://github.com/ergosimulation/mpslib/) [Any 11 C++11 compiler should work, such as gcc, MinGW, MSVC]

Installing

  • Via pip: pip3 install scikit-mps

cd ROOT_OF_MPSLIB/python
pip3 install .

If you wish to develop the scikit-mps package, then install it in editable developer mode using

pip3 install -e .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-mps-0.3.1.tar.gz (2.5 MB view details)

Uploaded Source

Built Distribution

scikit_mps-0.3.1-py2.py3-none-any.whl (2.5 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit-mps-0.3.1.tar.gz.

File metadata

  • Download URL: scikit-mps-0.3.1.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for scikit-mps-0.3.1.tar.gz
Algorithm Hash digest
SHA256 d09a0217e6812c3406c74e68861def2e07e025dd1bb73c2f6dfa35133f9c5f09
MD5 5458abd52f5c80176fce93636d4f4964
BLAKE2b-256 a699d994b66037834662ff90dcf4e6ebb549c8cc8adbce54644c937be06bc41b

See more details on using hashes here.

File details

Details for the file scikit_mps-0.3.1-py2.py3-none-any.whl.

File metadata

  • Download URL: scikit_mps-0.3.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for scikit_mps-0.3.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 dae495c37d94de32286409b918b0c40e5b0325fad7824f0a0cb0f5fb48675d1f
MD5 96faef69ecdb6bd28e7f79458d815bd0
BLAKE2b-256 c1e27bb14b36898ddd07a3ad7dd1e0725d1937161c60a3dbc62bb653c50b561a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page