Graph algorithms
Project description
Free software library in Python for machine learning on graphs:
Memory-efficient representation of graphs as sparse matrices in scipy format
Fast algorithms
Simple API inspired by scikit-learn
Resources
Free software: BSD license
Documentation: https://scikit-network.readthedocs.io
Quick start
Install scikit-network:
$ pip install scikit-network
Import scikit-network:
import sknetwork
Overview
An overview of the package is presented in this notebook.
Documentation
The documentation is structured as follows:
Getting started: First steps to install, import and use scikit-network.
User manual: Description of each function and object of scikit-network.
Tutorials: Application of the main tools to toy examples.
Examples: Examples combining several tools on specific use cases.
About: Authors, history of the library, how to contribute, index of functions and objects.
Citing
If you want to cite scikit-network, please refer to the publication in the Journal of Machine Learning Research:
@article{JMLR:v21:20-412,
author = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
title = {Scikit-network: Graph Analysis in Python},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {185},
pages = {1-6},
url = {http://jmlr.org/papers/v21/20-412.html}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for scikit_network-0.33.1-cp312-cp312-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f24c400b03c5297f3194b1310c959200225ab67cf8b1bb0b52148ed7aefa54e5 |
|
MD5 | 79f433a2b92bbb3f831046b825491475 |
|
BLAKE2b-256 | 138544ca90ade407da63879b047b1793aa5c9595d798a05066c1828618e3270b |
Hashes for scikit_network-0.33.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0c28f1274d31a085188ca964f85df50f75cb67eebc5724dc6c9cf1f4aedc88b |
|
MD5 | 3749e9cb9c616faa4baa78d307cac686 |
|
BLAKE2b-256 | 609b1427f4c46965d47a788314f4c726a5176f792bd15bbc4e6adbb6fbc39c36 |
Hashes for scikit_network-0.33.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 660f1d6f6fce35f81d35d499262b83e80e634ff78d803a9415c77f24c962936f |
|
MD5 | c177c34baa69e7bc9fa792f2bfe85430 |
|
BLAKE2b-256 | 1645e457ccf19ea30722fdfdbbd80418141a33768273bf628b0a6586f360f75b |
Hashes for scikit_network-0.33.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 169db9f7139c0d8785b9156dd903dd5dce2322ce89d182ccee15a35b713f4a50 |
|
MD5 | 7907ad90c4b8237e96cb444eb95ed805 |
|
BLAKE2b-256 | dcaae66403a2996c6c3b2a0e5df90efe32b79d976eb567fcccdb208b24e27660 |
Hashes for scikit_network-0.33.1-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14be38cc9c2f481ca918af46d48d1d3ef2931f4859a02920473cc567d0e33136 |
|
MD5 | f963b5329e7929738c5b15841b179541 |
|
BLAKE2b-256 | 7bdaef534a75a0fe347d69e0a79fa72cc843b1907b3a86736861b09f39f8116b |
Hashes for scikit_network-0.33.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6dfb1b8c25e91a909d0094edb2efea90c080657c81ef5cf5fdd927534543e6b |
|
MD5 | 891cbcfc53c829a84b07845a5bbe45af |
|
BLAKE2b-256 | 2700cf3928c4db6b3ffb78ab95580aa61e4b22945703d6b566eb5b40d2fccccd |
Hashes for scikit_network-0.33.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 044e6726fdd3304aa2b97f70b68a241736aba105d7f968b29834350610551bec |
|
MD5 | 9b88328de1a435b58468023967a56319 |
|
BLAKE2b-256 | cb0544b952a0960b12e9bf7db2abfafd66338ebfe54ea2ab401dd2b72d8c95a1 |
Hashes for scikit_network-0.33.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec2bfec9ddda6780157a1f0a3f2891468f5e1227b3964ce65bab19174bd9c235 |
|
MD5 | dbfa8e4f27fc4b63b3d5dc9403d85c54 |
|
BLAKE2b-256 | 80eefc120bb03252044c06d3667cc6314da5b1b08574093360efadc6388cf597 |
Hashes for scikit_network-0.33.1-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 905bafb50d75b3d83b2cc723bb5b3c8034a1988f46ea0e297ad02866cc2a0bbb |
|
MD5 | 99bc5db2f34fe0b832264632e65f74c1 |
|
BLAKE2b-256 | 16a9126bd94c028777341c2dab785599628023bf2c968a7643957c06ff63e0ed |
Hashes for scikit_network-0.33.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27aec6b11fb565b4da6b4d2b30981c90675ac328262166c15a7dc18a4c58b566 |
|
MD5 | e754b47d88988c8628b8d6e782b004b3 |
|
BLAKE2b-256 | 1add2a0de96e8919dab0c316908d88b8f891d05535f9e37725b11ef37ad62f20 |
Hashes for scikit_network-0.33.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 271592b303ec878e5d37925468a8845f698b5f7beaed2a52542f5225e7d45b24 |
|
MD5 | acd255c8f73918a6f7c767017a24f2ed |
|
BLAKE2b-256 | d7d2ebe32a5b1cbcb3b6a65738f6e635842817b1950938b6fa235f25ca14a9fb |
Hashes for scikit_network-0.33.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab02059ab5c3d840d719fcab9bcd662f0ff8dba690609032727d3f90ecaf422e |
|
MD5 | 89db9ede34ae155064eb1aad270a0285 |
|
BLAKE2b-256 | 90e1574231ea3c35f44a97081e34839d83378fa7ee78b316e7d0a0c1c212c83e |
Hashes for scikit_network-0.33.1-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 857b83d060d64b14746a5b89b600ad7e3e1921682d449eeb625b52dce111f4ac |
|
MD5 | 286ea2e419f3f002a2839a33bb9208ef |
|
BLAKE2b-256 | 6cb5125f5ef22624a17b74593ea29800f7c9afb79ac0116b41e5264d9397dd81 |
Hashes for scikit_network-0.33.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0164fc40f166cbc9f0d539f09bcd537958f48a2365658249f7ca0083b22fda4e |
|
MD5 | 618ea801db1f6ac3547db08b086ec7f0 |
|
BLAKE2b-256 | 338ec778b6603a33ab31b74e5c6996165ac973ec837253af664a191bcd7e9bca |
Hashes for scikit_network-0.33.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b77d1941bce2ec59c022207eab6a2489a28a47db9ce31cda2add4f8b40e1e62d |
|
MD5 | 9c685dbe957d4692cdc525f8db1eef0a |
|
BLAKE2b-256 | c60b1205fe45cfcaf82f8e01c17ff8404435dace4ff6464a4df9687e3338d439 |
Hashes for scikit_network-0.33.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d418f879359ab1fcc14d6a06ec889b9ddd5acf61048895c26be75930ca51d32d |
|
MD5 | ffb30a5e00e1b3ab9eaafd2bbf9dde28 |
|
BLAKE2b-256 | 3e9069dfa4b458442301677e6b833ae5e8a7872dfcf9ff9a311bdaf3ba6e735c |