Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg

simple_graph and efficient tools for the analysis of large graphs.

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Various API change (including soft classification moved to clustering)

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.13.1-cp38-cp38-manylinux1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8

scikit_network-0.13.1-cp37-cp37m-win_amd64.whl (796.6 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.13.1-cp37-cp37m-macosx_10_7_x86_64.whl (812.4 kB view details)

Uploaded CPython 3.7mmacOS 10.7+ x86-64

scikit_network-0.13.1-cp36-cp36m-manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m

File details

Details for the file scikit_network-0.13.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c1beb59935f3993780c6f924c1acff8c1e7791cd63121c779e6bf98bf18079dc
MD5 f8ee32025e23793c898d4d334a8cb40e
BLAKE2b-256 12901fee3da5aa26e8f07b90a15499c3c4a1dda313be8c4d6a84a3425ae74898

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.13.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 796.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 af9f4d1277ea9cc6addb54e43e42023d575a3d23a2bba8b1ee5e94e85ee2767a
MD5 4877fe44299ca34e13e23cc8220a5053
BLAKE2b-256 996232c4960a61397a6f23f960ebb05f2fe3b486cc456bda158d90667e09545d

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.1-cp37-cp37m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 812.4 kB
  • Tags: CPython 3.7m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1b0681ba26d0b009cfd6cbfcaabacb47ae0d078de8a2e9d08e7a66dfac72cca5
MD5 6bbd43ceebb0a198b8fdbe560fe10c1a
BLAKE2b-256 8ed442d8b289f47b94998d0cd4998f3bd52b2452ef043d13f3e8d06d230b8a05

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1081e184af72804aed40744fcef3ab36cf295e5a85b9fe068ee3dee1630e8a66
MD5 54e820833c5e9e7c3a1275872da04588
BLAKE2b-256 f9850087e0e38b1b35e6d7c8f49c258ea2afea3538c3a20a1466a0ea3dc1e6fb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page