Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg

simple_graph and efficient tools for the analysis of large graphs.

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.13.3-cp38-cp38-win_amd64.whl (801.4 kB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.13.3-cp38-cp38-win32.whl (749.2 kB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.13.3-cp38-cp38-manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.13.3-cp38-cp38-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8

scikit_network-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl (806.2 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.13.3-cp37-cp37m-win_amd64.whl (795.9 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.13.3-cp37-cp37m-win32.whl (744.0 kB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.13.3-cp37-cp37m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.13.3-cp37-cp37m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m

scikit_network-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl (803.6 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.13.3-cp36-cp36m-win_amd64.whl (795.8 kB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.13.3-cp36-cp36m-win32.whl (744.2 kB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.13.3-cp36-cp36m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.13.3-cp36-cp36m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m

scikit_network-0.13.3-cp36-cp36m-macosx_10_9_x86_64.whl (805.9 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.13.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 801.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 266e331e5efdb12416bdd3131547a7ec775a08301a77cd2efd6c888ddafae1e2
MD5 3317c1521ed9fd68ca9c9441fe954247
BLAKE2b-256 e38b356c6eb0743fcbd4f6148183619baab48cce383bd8f0b43e530261720bd1

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 749.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 50fda11ac341ccce69a88ce6a0c5c0ff1cc7eee029da2bc097d3d93cb4135eb0
MD5 a7b1449058b1fb175de530817867cc04
BLAKE2b-256 7450e754204af9576967f20b51b355b143d146e44fa4a8fee9fd7a12d89b417f

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.13.3-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 09ad3bf68fa87610da79a2281652a9054a81db4f9ef1edb610e12ca885b10e4c
MD5 f2eed42919fff153675c5760b2e9750e
BLAKE2b-256 a5912d1904d794643da78af62e381e91ecf18deb88b817747f81b3722f9c0c8b

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.13.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1bcf81b682b0389d711ac69394882737ba3e9176ca31ae9ec1c3a6e245a41886
MD5 8fd4d54d9ba6776934c7d18f9988e0d8
BLAKE2b-256 a818c654026fcb172e419f1ec3e231d22ba8ff19c179406645d09dc2e417ba4e

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 806.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.13.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 770eb49e70258cb17b9e35063e06e2cff9486d5d3a035e677a81ea82a8e6af48
MD5 df70355df691d0f61ae142ab0f20f0c4
BLAKE2b-256 37fb46b521fe857418a9d04766e920a8a89c1892619a24455292cb7a2dac14f8

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 795.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b027f6d79c84734a1125d402960e0b1a37e82201672d7e6bfb7594e20585a5ac
MD5 7a412583888b408c11837334b5fd095d
BLAKE2b-256 093c5ee87a53509f1e1bcbffcc43811ff9db8adfb836ae6f6eb15da7973c84b2

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 744.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6af29752aa4d8e6ec72fe0bfdfa7cd13261cce1f46aa7f109f6b77c412ec8280
MD5 46b631ad61e1acd8e1dffae06c98ce0f
BLAKE2b-256 736bca68a20cdca811679dcf5b4a9c6a60956540a825dcb0387a71d9817206f1

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.13.3-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff487e6b0fc307a45048e172e34692737e3ac09e60b9ef21a890c0272d39400a
MD5 b486c488b7d3bad16cebbdf6b32d7660
BLAKE2b-256 25a4c6004685b10ac28cbb81e637ff9410db4fc8ce654390810f26803568cb0a

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.13.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8fb892eb6f47251d771c8584f7c123e9c66dc69a181b3eaeb692838246faf3cd
MD5 4c543ff19553cd7645d61d883d03e7e0
BLAKE2b-256 3357878a4e1eadf99143c49c080045aeab8274795eba5d0455255fd04d931d01

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 803.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.13.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d33e49ab696527d62985045cb7e4d23e589a5a16150da7b7d817e66891f76d4
MD5 0d1ef7598e9f27246a19d53477c9ff81
BLAKE2b-256 bee387bfb65df59b4403d812e9c54685ac09dfe0aae621d1f7f40d5ee7032e07

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 795.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5231d7bf486dca71c40516fcb77b57cc0164de50022b8ac2aa494f2460238aac
MD5 be47dfe1b07e9549c9bcd55890a8511b
BLAKE2b-256 6f644ef72c87161612e2840ba1a7c1bb7e692d3e2c570e8919f4fed585973981

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 744.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.13.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 659cf4346895adeb676027cccf33c7097149f8213dff0d365dcd7d3189da7b06
MD5 4af6c83a8a7a0e8400e6f9b0bafe482f
BLAKE2b-256 5deacf469d4c10fe9ff3dfb9335d8e2ab22e391fa706af84dc7f934e02e1f7af

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.13.3-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0fa5f45bc0bfdded2eb1be657df53ca161b93b329808e6528317dd498652cc30
MD5 a32001a5ce46ef1ab2732ed45c64c8b7
BLAKE2b-256 9f297df910d244be57ec0394c9cf95d4170758eba0fe746c53699d600fdb3704

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.13.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6b267dc408028b81fca05c8c91a939ad7ae9333fa74e8eb3335c6c5f22d68c95
MD5 eec0d7d0fd8d66d820bea40637569b0b
BLAKE2b-256 035b354cc3a0ace0ccc370d614275904527d1e82f6e9560b16f44ac4283927e2

See more details on using hashes here.

File details

Details for the file scikit_network-0.13.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.13.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 805.9 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.13.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb5e2436b338e37efea8f97813a4773b7373e88781dc5a2b44fa885ae9ab5df2
MD5 1a86463546a80d23b4121bcc70fe435b
BLAKE2b-256 4431cd94fc91c8446fc3723635e07ebeaee708d9c028efffcc7fff91bd7ed84a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page