Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg

Fast algorithms for the analysis of massive graphs.

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.14.0-cp38-cp38-win_amd64.whl (809.3 kB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.14.0-cp38-cp38-win32.whl (757.3 kB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.14.0-cp38-cp38-manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.14.0-cp38-cp38-manylinux1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8

scikit_network-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl (814.2 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.14.0-cp37-cp37m-win_amd64.whl (803.7 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.14.0-cp37-cp37m-win32.whl (752.0 kB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.14.0-cp37-cp37m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m

scikit_network-0.14.0-cp37-cp37m-macosx_10_9_x86_64.whl (811.9 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.14.0-cp36-cp36m-win_amd64.whl (803.6 kB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.14.0-cp36-cp36m-win32.whl (752.2 kB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.14.0-cp36-cp36m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.14.0-cp36-cp36m-manylinux1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m

scikit_network-0.14.0-cp36-cp36m-macosx_10_9_x86_64.whl (814.6 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 809.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 811d3008d140e455977408ddb44a016c74f7a71895a73ad470d74e395b320045
MD5 cf44ce59398845e83d05ea66ff44c30c
BLAKE2b-256 7d0bc3a915ed466942b6563a28ec027b9fb6159b7ab3ce1265f5a2031eb556ee

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 757.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.14.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 96800a7a6cae64155af6a94f1cb87fa11e1bdfb17ca29e503ab5ae7335ee786e
MD5 beaf0062477b101d67495d86ad455def
BLAKE2b-256 29cf1327968a7b0fac18f33c070be2b95b1eea66409912ec3f750bab243edf56

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.14.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3124bcec3c18e0084546243ba872f0358ff57b3e426fa244c5484cba5298fcc
MD5 8a974d0ccabe717f4e6d774efacbb7ee
BLAKE2b-256 49af9812ae6fe9750b3d0dcca9c765e94649038a15efd35b3fa27f88cc35a0dd

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.14.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 14068269a3bd403d8d6f41232d860f815d4f4674720c95a6dd599fad7cb551d1
MD5 d30739e19a5df70dc98f7608472a4c67
BLAKE2b-256 82f10ec5581e146ccb7188b92566d5a8fb44c76e25ae61e2e5fb2cd62cd1689a

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 814.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.14.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 111d7a55766b2c74fc88538cd605768f2e012ec7a33a7dfa765d6092f25d82b2
MD5 5a4c41af1898bd55b97a50b363149db4
BLAKE2b-256 8906fe0cc93212971dc6e3bf2593ec23d6abf17470dcc32b111403ca6beae1d8

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 803.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d560ffa6aa8703b5788ee9386a5ce438aef6f699e1a9b643072fa1cae7dc9094
MD5 7a66316e34f97cd86bc31a7359fdcb95
BLAKE2b-256 cd77adc8b288963539383ef4907d52937de9e9da59eeefc0c5ab1b51e4a2da79

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 752.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.14.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1e7a65e575d93d6cb855a1ae7632bc3b7c20d6f176ce7bd4b61985fe5ca9919c
MD5 8caa2efc4e7dfd77f0f9e79a5777eba3
BLAKE2b-256 cc71191a7f01465aca897f3d9a978ec97df7affa10f8095b23aea5c172abcf32

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9f6b627cc29ae5b9ae7fddd814643b9d3c37e283d72f7d2d6d538da045666606
MD5 e8b5fb6c8e0f178ec6e0df33e65a8b9e
BLAKE2b-256 677c6ded8f3bbc778d6efe4374f40caf6e3ad59a121f95da25dcbd942f093aaa

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.14.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 855f1d17909d7992f08a37bff035aee7e473027e01290ba9fa55503514902302
MD5 1337e9d7c3f95c229cb2abf71d7c6f15
BLAKE2b-256 fc106e4cd00dcf317876a1e57f402e09385aff494da09d47ee1c9ad3d25b1336

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 811.9 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.14.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f10eacb96eb0d251837c9e9224bcdbca2fe2824aacc8b2c1bc07a1e33edf848
MD5 87b7e5a978e3f77f3be39b0cac902eb0
BLAKE2b-256 06412894f84fc7a0fde6f603e917cb4c78c5926710166083fd8828990a76a1e0

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 803.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.14.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ba94088b55902b093b603f637b16038e8be34fb6ebd45c1ae2a7df8397a05086
MD5 bc6ce1f5cd4bf99e37df45d5156eab09
BLAKE2b-256 b1002c968dd96641b0d827a9d9d15aa57f0416ffdaef9bbcae732a086e6417a5

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 752.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.14.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1f6fcad9886a0294ad3f81e3efadb492ef0b5db50077af3459d59ae52e355120
MD5 18e27648cce517a0f788ed9675c1e734
BLAKE2b-256 411e270665937b2665824ef33a1d2e97f01c68c9963268437fc80183cd7d8af2

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.14.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1c9656c6d114aee18ce5dfca172492734afa7d17cbcac6b7a58795e07f079c83
MD5 df75d55ab8f5d2ddf376209ef1ecf1cb
BLAKE2b-256 d8cfd3f5bd0a1e98cbf2dd5170b36e4f3241a3952775ede55cc4b01842e8e6aa

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.14.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 393498cd13b4ef881e8defc8babff08280a3b46423da338a5e7d667cc7c37299
MD5 16af39929831966f683bec863c159035
BLAKE2b-256 7ec6dbdf37ace4bb7c3adb25a92f0914b025975c9157e3219ee08d3f222da91f

See more details on using hashes here.

File details

Details for the file scikit_network-0.14.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.14.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 814.6 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.14.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b642fa5b2e36ab82c89c8ec7e65b57d6d20c6460ac97ce00e01ee4222c7fa87
MD5 3c642d6d045eddd143b6a7763147d3f9
BLAKE2b-256 80f25bd5b1fb58d4d991bd386ca84a46ba8a65fbab4cab5b0cfeb98284f0035a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page