Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg

Fast algorithms for the analysis of massive graphs.

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.15.0-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.15.0-cp38-cp38-win32.whl (934.4 kB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.15.0-cp38-cp38-manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.15.0-cp38-cp38-manylinux1_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8

scikit_network-0.15.0-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.15.0-cp37-cp37m-win_amd64.whl (994.6 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.15.0-cp37-cp37m-win32.whl (927.9 kB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.15.0-cp37-cp37m-manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.15.0-cp37-cp37m-manylinux1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m

scikit_network-0.15.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.15.0-cp36-cp36m-win_amd64.whl (994.5 kB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.15.0-cp36-cp36m-win32.whl (928.2 kB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.15.0-cp36-cp36m-manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.15.0-cp36-cp36m-manylinux1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.6m

scikit_network-0.15.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.15.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 51041c82eab05ec27bb10d99030ea897a7815be77a9c2c95c8550e8b0aea4df3
MD5 0dd62a1d019760f8a9aff380f50b304f
BLAKE2b-256 e1c65c13cf1644ec228cca785cc9014f996e4fba6697dc7fd622c56b945e7be2

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 934.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 08b96a055343734871532484e38de82c9ada00a82fc37810d5ac45d3e60d00af
MD5 a8c0a2233d030b738658eed926bb827e
BLAKE2b-256 515406b434c872b2ae29069d417cbe7256acede4405b398b321024a47cb820b5

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 05db6de289f582984da99c7ccf5e3a802994fb2b0f2576a6c79a083aee234645
MD5 75f8754436c96c9eb5998645fd411b0b
BLAKE2b-256 a84ad8cd4c655d72158a940142f318a50a6acd746e5b1a3485ac421bcd689d66

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5fc71f890dc277c6396231cd778fbcb2eb7fc0c15698253acca66584e51fa8bb
MD5 f5ef33a54d85b3b5d003f718f44c2f65
BLAKE2b-256 e0da19243c4aec12f6e0b76357a79f95036ec6b445d4228c8d81d32871bbbf2b

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5d486bdea14ee22674f53e857a9eea82e24cc2791e00de623d7bc6f14970de8
MD5 376f1ccffbcd2e2be2e8127a53f08e6f
BLAKE2b-256 beb1eb4535420887b82e132376681449dac343dce6c87583bd4e599858709ab6

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 994.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f0fcadab229924ff7f7751476719fb7e20478aa24ec04715fcb9618026fa620a
MD5 81219d8f3edfd52c48772391995636e0
BLAKE2b-256 a7b7130c27341101a9d9d6bb9825240513fa60fdacd07b0bc9848197b9f63832

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 927.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8566bba900d03958052f70624bd95a0bc3ac6cc53e39889ad86bf13feb820eb9
MD5 e21fe32dfc57047ee6a6233cc6b15ab7
BLAKE2b-256 796a49b9899f8cdd863ec6de640331016434fb2b8c65981f2bda1e9e065d2a6a

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f3bd16a5dbb8f2d730368132d2ae956fd1244c9b197582d02d707c6617e4ffdf
MD5 480c6ccbe20acdcac89dc8223afd7857
BLAKE2b-256 75cdb3460550ee8123e1948d0c5316de71cc50af91cb7b11bba31a214359fe91

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a82f9eacf362f8072927783e89870365ce436ffd89cbbdfe220d5e2cd6e447e2
MD5 039f2ad556b9a514441444197ae68c16
BLAKE2b-256 9c342141cf78adbd60091dfb7055333fcd31134f965121e8fed17a6c0cf3e72b

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0a41810b739f6466770775f6d70401156b36133dabc65b33fe250d20593da8f
MD5 5db9f4a78d4c09d850cd213bca13463c
BLAKE2b-256 814a56bdf7561d6fc1d9969cd2116d793c5c5048ac2a89d85e81dcc0ab132b73

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 994.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 68915879c4f409c24f32ae4b8072a283b3b662c68b836171912cb35c694080d0
MD5 6256d626656bbbcd3c6ac0f371975b17
BLAKE2b-256 b8d61b5fb60654d2f24806711637666b472dfea6e98f810773856a8f82caa8cf

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 928.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8a9d04d4ce6617feb81c971ea9f977da584f605f234495d193ade6e763bc1bba
MD5 25ca724fc314934630398c6e2e4f599e
BLAKE2b-256 af05b6f8b9a63db6ee2546f75fcc775a7b57d50b16244fa1147126377c1909b6

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0337c9a6f837750570e3d7985082406836b13df6a8771cede312d0c2a63f5a48
MD5 ddec9a6b3709988e1cee17e5a1c82dee
BLAKE2b-256 189106c756e2a9f8c6c2140c2812e2a21f0e75a45cb045f68fd8772d326fa592

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 324485d6c600c2ade573180a23bb11fbee769dc56589f16a279e69df5161c3c4
MD5 288c37a4fb90f13929ada3ab7d6f79ea
BLAKE2b-256 bc5a9076f922852130099180f855f09fe817c28fdaeed2bcea1bf80dbc2bfc37

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6789dfaf73eb2ad42d4cb0c2f1f83f9fbd80020febe4632ca45ba987c1a5aa1e
MD5 4af626ca888f5363ccd8dfd3fa9bea09
BLAKE2b-256 f200742a93adcefb80e962124027344975f0873b20743c9b77cabacd2a73122f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page