Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg

Fast algorithms for the analysis of massive graphs.

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.15.1-cp38-cp38-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.15.1-cp38-cp38-win32.whl (933.8 kB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.15.1-cp38-cp38-manylinux2010_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.15.1-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.15.1-cp37-cp37m-win_amd64.whl (994.0 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.15.1-cp37-cp37m-win32.whl (927.4 kB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.15.1-cp37-cp37m-manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.15.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.15.1-cp36-cp36m-win_amd64.whl (993.9 kB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.15.1-cp36-cp36m-win32.whl (927.6 kB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.15.1-cp36-cp36m-manylinux2010_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.15.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.15.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 65e6857a4799183135736229cfd1f742d6f19a1943c1799c928c8a62a9580038
MD5 41de36acb080c3b0a9c8bbb4bc74b21b
BLAKE2b-256 c17fc62abfabd74bacd0cc573f8019768da3271e28a009668c1ebf14f7328a16

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 933.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 968199073ea46a02c91589927c0ed0366f8e9e485568b7b725d8ea42bd2a06f6
MD5 42a93a7d8a93a89f56bf64903a7dfc48
BLAKE2b-256 45e399946f1ac562ed6e486fd76e77c2717a181b9a19e4aa24d79f56904d3ab4

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b9dda5b6f0ff87cf882401e2dcc881486ce5fc4f429de60ccddd2f695a1c73fa
MD5 6e24901b5446ceb1039d1ab372181d3e
BLAKE2b-256 7afa8ec08b4d410d68cdce11d0414ab1fcb1fb32b750d623dc31ba3d941b1e68

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 96fae0e54c01a153fcca8bc3e29945201107f416a7820cc6810010a7c81e4900
MD5 5e7806541e3fc687dd50ebee61063f16
BLAKE2b-256 8631299c3584a157d18984a80ca2ab698268ffd652e6d27fe07fbb2751834e7a

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 994.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3d11f2bfc0467f5a8ea88fbbc56bd12e47b7761261389f2b80c2f247c5e6b2ac
MD5 26f6ec07222326ff3631a3c9efd922a5
BLAKE2b-256 277b7e460f003a134cd3f9fd5307284e2fa68be3e5847c6d6fe9fd986230c6de

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 927.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6af588dc85536fdf2968e8a167509796de5f73eac53fe789f5b4d51b947e9df4
MD5 8d1e2e0fb9925d045c465d18d902b79b
BLAKE2b-256 01e95266f10b11f810cd223bd7dd12df6dc6005580aff49be25930751dfb034a

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fc54d413d7f50fe5ab38470fc3db8f21f9e1ab91818c8d3f39fe06de84f4cdc2
MD5 120d1f704b4a6ad2fae007ce4f8c74a7
BLAKE2b-256 264d30e10a1dbbedbee381cc37decb084dadde3225e5520ea35cc2bd8f46fc7d

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab0b21b90f172068670580f2cc37de0bf0c0d838df5e85f0facc192bbf0c7a19
MD5 36b5bff7138a1488f995c5df50caa422
BLAKE2b-256 f0bbd44f3c24beaaf72f4e77531df6eb01449e2a6e3355bf6e8280217b207d15

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 993.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d9e626f0bf78ea4d39c8be0881f1ed8101380427f4c72d88937aa8f4107f94d3
MD5 b18e52ec804b7684901f978e91aa0e2d
BLAKE2b-256 8e6cc4410caf5b7c5e4530f23df27a06b95798dd4d46489867ca689c07e04154

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 927.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 48293f53b84cebc58a242cddebc981fb26829effda9f524215f7292dae4d4521
MD5 ce36e1dd690a58afc00c72e40235eab6
BLAKE2b-256 beece03fe6d806743c0c1827db029f2ee1fad8c68947fc865ac21c3a06dc1741

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b17822f569ff05e67d57de4711fc43251db8db6fca87e59d2e2fa269553190d7
MD5 76e54d97905d667a105620cb16365ae7
BLAKE2b-256 6e303e0fa66eea02fb7b3c3db4aa25a253b7b98bc896697e24b9f0edc434e0ac

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f85830833ad9075a497f4e3197088531c1794cf8b67a692ebb38fd5acfdec909
MD5 617cf5609fe6d9d63c35790029a20104
BLAKE2b-256 328ddfce8e13165d87f1008f48298616c4f6e36d72a07f8b8d49e35f94d2a3c2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page