Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg

Fast algorithms for the analysis of massive graphs.

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.15.2 (2020-04-24)

  • Clarified requirements

  • Minor corrections

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.15.2-cp38-cp38-win_amd64.whl (475.4 kB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.15.2-cp38-cp38-win32.whl (408.5 kB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.15.2-cp38-cp38-manylinux2010_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl (699.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.15.2-cp37-cp37m-win_amd64.whl (468.7 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.15.2-cp37-cp37m-win32.whl (402.0 kB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.15.2-cp37-cp37m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.15.2-cp37-cp37m-macosx_10_9_x86_64.whl (694.9 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.15.2-cp36-cp36m-win_amd64.whl (468.6 kB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.15.2-cp36-cp36m-win32.whl (402.3 kB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.15.2-cp36-cp36m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.15.2-cp36-cp36m-macosx_10_9_x86_64.whl (697.4 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.15.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 475.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e1e9ebda7faa64b051ee93394932ec5d4c6624639e5a36a5c021de7d973e9bff
MD5 e8c0c1100df4c4c121f836ac03f294dd
BLAKE2b-256 8319e8de6ec08153c9e7578d83452431abb618afd1f6c8b6b65fa2ee69c4347a

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 408.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c5b548f6ef9cd355819a60a9debd7d29a96aa54cc8137026fb4ab06a39faea89
MD5 72f4701280e8da49ef7fedcc4f075534
BLAKE2b-256 15ff1c5a10735ba5dcff0c2966412cc7a389e63dfb3947b8574f1d146682b3a9

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a90a2e70d7b29fe17d5fe8f14337756a10c87f9e006273a47d8e6cc49629a5f3
MD5 1ddf93e612dbb761e154a3f1225364a2
BLAKE2b-256 c433dc76ceff34b18343a6afb014993d3b4d9e8f2db55c60501866f2bc8ef823

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 699.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 215831ee68c4a903444cee5a83dfc6786009d85ed162c13ef5031d4b62685843
MD5 9fa74394bcaafc38b153bf989536aaeb
BLAKE2b-256 e2a340d1d38d55cb943ae682a33f1e9780f2822aade060f61563fd4dc22b8cf2

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 468.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6873f1166a9e699aa1c0d1b313612af3bae4f606d867fd30ff5872027cbb1408
MD5 868db6d7992f655ac6b6412e9a324492
BLAKE2b-256 a5461e7df253ecf1426a0cc55c082d14148b287aaf232ca41a709ceb1a0f43e0

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 402.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8a1064ee2c6444f4c53e778fcdf4a9be782c7631d29f8bf805b292798371a5ef
MD5 d7add2ae7d67bb0cbaada1f3fd8a2fcc
BLAKE2b-256 8756689a4401117714ebe8cddec813560f2d01d7dc6416e8bf83c0a0b86dc89e

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bea40efcc511927a0a74319ccb529f2bdda62f97d31bc29767061864ba2a6489
MD5 89ac05e9bc5f168f2518c211a5f86c5d
BLAKE2b-256 f82bc949641fec483370fca88618498c48935ae96efe156216c55bbd5d21f637

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 694.9 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c612a1829adb6947c89af428206120205f9e01ad96186fcb2c49be81b7c8381
MD5 f4e202d61f8d4dfde5cba95926ce3dce
BLAKE2b-256 4fa0ea837463114817077232dbbea054a685109633f0c543e765b7fa4ab4995a

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 468.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ffe9c8a3a477dd7fe46299486704b080bd7883edad4f6b2d5772333e490fd190
MD5 c75e030d8a4187d9259b6536962de563
BLAKE2b-256 5876c9c1ec8d495a7edc495f57122d59123093a3995585620e3d7f7316e12c0d

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 402.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.15.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 79369410e3215d7d1154450b2d62bde1f3d4342829eebca082509a387e545ad4
MD5 bd28fca393020919dd43670dcba945c2
BLAKE2b-256 7b3089d53b200addf68719cc87b5fb50736ee1c6883bc5023efa421bf5830649

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.15.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8dafef1a2a762e48b810d4a64143277040b44ab423210b0f6f0543ad7a23caee
MD5 a373e560613b9c13d5c1c80e54d990da
BLAKE2b-256 8ee15a6fe659f2a419038461b61a25cd8ba31d83a1d617e785db39721cb15c9c

See more details on using hashes here.

File details

Details for the file scikit_network-0.15.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.15.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 697.4 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for scikit_network-0.15.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38270d0082a50e99beea74471bae6b52839bb82424dfe3ac6bd58c54875ec645
MD5 e50bdbea271795767dfb4f19f30a826b
BLAKE2b-256 e73819ae224460d18b9efaa97094f2c1307884a22be9a0facb51f6308db6d8bb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page