Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg https://img.shields.io/pypi/pyversions/scikit-network.svg

Python package for the analysis of large graphs:

  • Memory-efficient representation as sparse matrices in the CSR format of scipy

  • Fast algorithms

  • Simple API inspired by scikit-learn

Resources

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.18.0 (2020-06-08)

  • Added Katz centrality

  • Refactor connectivity module into paths and topology

  • Refactor Diffusion into Dirichlet

  • Added parsers for adjacency list TSV and GraphML

  • Added shortest paths and distances

0.17.0 (2020-05-07)

  • Add clustering by label propagation

  • Add models

  • Add function to build graph from edge list

  • Change a parameter in SVG visualization functions

  • Minor corrections

0.16.0 (2020-04-30)

  • Refactor basics module into connectivity

  • Cython version for label propagation

  • Minor corrections

0.15.2 (2020-04-24)

  • Clarified requirements

  • Minor corrections

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.18.0-cp38-cp38-win_amd64.whl (538.6 kB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.18.0-cp38-cp38-win32.whl (466.2 kB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.18.0-cp38-cp38-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.18.0-cp38-cp38-macosx_10_9_x86_64.whl (757.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.18.0-cp37-cp37m-win_amd64.whl (527.5 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.18.0-cp37-cp37m-win32.whl (457.9 kB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.18.0-cp37-cp37m-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.18.0-cp37-cp37m-macosx_10_9_x86_64.whl (758.1 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.18.0-cp36-cp36m-win_amd64.whl (527.2 kB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.18.0-cp36-cp36m-win32.whl (457.9 kB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.18.0-cp36-cp36m-manylinux2010_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.18.0-cp36-cp36m-macosx_10_9_x86_64.whl (760.8 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.18.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 538.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for scikit_network-0.18.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 684876f9f321009148d70290e90e0b1daaa0a5628eeccf79c9fc916bf8475512
MD5 a4a6229be35837bb50b0e73aa9a01d9c
BLAKE2b-256 a8ae19def3d2d747cb28b180543cbeda113055d3119e6c5a5b8749f2ca98fd4d

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 466.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for scikit_network-0.18.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7df6f3478c6f478d41517bf5dc4b19f00c954770599c4ae5b0e0f8ea661de00c
MD5 a320d8cf39acb298741448cb1879cb57
BLAKE2b-256 9c306810b080716570fc075cba4ce8de3b01f94a0da0ee34748bb299b14814f1

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for scikit_network-0.18.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8a0a1cc25cdbcb1f26e224c176d5072787c65be7c41da281993cd891a712a5fb
MD5 9c55bd79cea04f5375a1284efba9e1b5
BLAKE2b-256 d8fc21d4f86645f064b45a97137bd7de17757c1622abf71f57c8e08910112db5

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 757.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.2

File hashes

Hashes for scikit_network-0.18.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e51f86a6ffbdd0f39c851b46140ee2a021adeb09483f20ab266139b5467ad669
MD5 09036916afe01359f8b1ea583bae6773
BLAKE2b-256 9ce7684dd5cc5b01dc9712836bc3461e824e513b969e84f8c4ff0c9353bb15a3

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 527.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for scikit_network-0.18.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9717488aa33dc8e3b92873daf70f7f53cfbff0c1eaab2bfa80f92d176c5db131
MD5 99a4412b3483eb2d99d2d7be84f18592
BLAKE2b-256 ea6170a93189101ec3b485795501a0cd637955ee2f58e4560c2f59500b04a789

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 457.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for scikit_network-0.18.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4e68198ed96076bfaf46114dbe96279f97c87d833030b2273d43ad78e7a54ec7
MD5 99c34a787253916012b501b045622133
BLAKE2b-256 c1143f456467bd759ca4b1ebd3ade602d016afcfc0fb5255efc54ea78a10178e

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for scikit_network-0.18.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c7f9ee3e948713a4ab080cb05a919e65b549e097a9ebbb4f1ba93ba7bf3c807a
MD5 7b2233f0d803348a87dd744251fef6ca
BLAKE2b-256 717863a0ad893f4ee50e985f6e098448f265717d7acbb52b965457ce6b6a5724

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 758.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.2

File hashes

Hashes for scikit_network-0.18.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27120c5f606b3ae442441d37e88e7c1dd32f8eaf763993a7e0e9c0d88c458114
MD5 ed77c98ef6428fa7f1702f72a4c5aab7
BLAKE2b-256 24832ea39879de2fced201c11dd508d5aeb21b1b5f9cd04c326ca0e87d6ba9bf

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 527.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for scikit_network-0.18.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8ebdfd47633c56e47982369d4aaa493de6241a0ccdc61beefab043d7b9d5ff29
MD5 8c504618d598095cc7ef385600626a3b
BLAKE2b-256 c7fd9fc9895ef69d4d573007dbeaf8623c6b2f9f4d80d47925dedec97bd9358b

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 457.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.0

File hashes

Hashes for scikit_network-0.18.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3eb050d6039828fc70ec08ebb285167950fc7f8dae91462f99a04f57265ad567
MD5 991d3680a62469f60f72ecf8af120fc2
BLAKE2b-256 2a2d707b61181b7d6cd4666f4e315444ab20828f60d9d30638f35e92cb1d06e5

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.6.7

File hashes

Hashes for scikit_network-0.18.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 483e2f71ee84b8f4549b9ffdd749b25383f11ed785d2cf553204e2b0801c2f7e
MD5 dcffd714cec23b5d37cde595c91f8bd0
BLAKE2b-256 7f04a6cf5f8a3e25e566d2114e2b7b4e5eb78a33260a30d25ab6b6c013f54d62

See more details on using hashes here.

File details

Details for the file scikit_network-0.18.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.18.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 760.8 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.2

File hashes

Hashes for scikit_network-0.18.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4314eb9a0a7ff355b1cde0144540f3926e204aab5ae741ac3b44fc4e73bc31f2
MD5 edc3b351f59a0103bf0241e488af85ec
BLAKE2b-256 9fb4f7ab82827a94e2dfcf441afcbd64359b3c62660fa2a87ebb97f00d703790

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page