Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg https://img.shields.io/pypi/pyversions/scikit-network.svg

Python package for the analysis of large graphs:

  • Memory-efficient representation as sparse matrices in the CSR format of scipy

  • Fast algorithms

  • Simple API inspired by scikit-learn

Resources

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.19.0 (2020-09-02)

  • Added link prediction module

  • Added pie-node visualization of memberships

  • Added Weisfeiler-Lehman graph coloring

  • Added Force Atlas 2 graph layout

  • Added triangle listing algorithm for directed and undirected graph

  • Added k-core decomposition algorithm

  • Added k-clique listing algorithm

  • Added color map option in visualization module

  • Updated NetSet URL

0.18.0 (2020-06-08)

  • Added Katz centrality

  • Refactor connectivity module into paths and topology

  • Refactor Diffusion into Dirichlet

  • Added parsers for adjacency list TSV and GraphML

  • Added shortest paths and distances

0.17.0 (2020-05-07)

  • Add clustering by label propagation

  • Add models

  • Add function to build graph from edge list

  • Change a parameter in SVG visualization functions

  • Minor corrections

0.16.0 (2020-04-30)

  • Refactor basics module into connectivity

  • Cython version for label propagation

  • Minor corrections

0.15.2 (2020-04-24)

  • Clarified requirements

  • Minor corrections

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.19.0-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.19.0-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.19.0-cp38-cp38-manylinux2010_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.19.0-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.19.0-cp37-cp37m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.19.0-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.19.0-cp37-cp37m-manylinux2010_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.19.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.19.0-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.19.0-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.19.0-cp36-cp36m-manylinux2010_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.19.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.19.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fdab566dab67f789cd248115029540bdb1b934a090114e67a02ef44c8d7ab6e2
MD5 9a9fd9f3b551166b6f20dfe69585d6db
BLAKE2b-256 e380b845c0ea1f78d9a9fcd6ffd037e5f4ef4e4c91ff746291505dd383b9d8c1

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0c130574063e36b152d34dc24351dbb93a18ff7222188aeeccf60c0db5e0a779
MD5 53b838029f0a7a82da5522aef2fb8705
BLAKE2b-256 39156c9f20ac16e05ddd548ac19bd6c03f892a742c27dc4641aec4bf559d2fdf

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 39b6eb4cc985adb092112d917bafffa966eb2d11a983465154cea311fb25eb55
MD5 e75499ec302b930eef1c90edeec8aff3
BLAKE2b-256 af4f3d1c8e448c292a3eeae2a65ab1936633f6c83dee85bcfff84655b98c15eb

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8deb1696c4dadf88cd84171d625b195149d76ccd86e9b660e764f72386b887a2
MD5 70b32eb68b1ee0f843a223daaaf676fe
BLAKE2b-256 54afca9ac07aaa693f6ff47421712716b5cbc343d142002a811eb51f0a634baf

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 77af7b11db7c59f9ead16c1c4405d9c2d71d14efba78698a71dae43773df4e9a
MD5 02aa7d86d5218547e71f0f48605345ca
BLAKE2b-256 32405574077a41645237d1b9f91dc6440efe6b01d5e461a5b60f1f5fbed6ac4e

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 44f77a46a8f5e61e32a83057b5e893c02e49f2cfda1c21faf50ed2d7781a9b64
MD5 54e6b564da15ab60d73c708aaded805c
BLAKE2b-256 06e983917497db254f1e4aaa955b57a68461b8a61119160a7c42f1051711cebd

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 944afbb22d85757fb80dc1601bb05764bc21c4f9b429ad589fa4a8ffc96b4a18
MD5 f44f7a0d79cc53e7f244360992d20f7c
BLAKE2b-256 6a6e5b20d5fd87c50ed0a7de57cca3cdd7d60ce70bff18f2283be22fd1c721d4

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0712bcd0fe90cc5b7451313a7fb930e26381f50c7acb5f284cd78f67cb7a7584
MD5 101794abbc735f18109dd3d834be5b77
BLAKE2b-256 8006d01634d58690950eca3cb574af4883fb7d22563d95cc91ceb47059a0ecab

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 61d8681c337bc0bb3b4068154fb9db4b735dba0ee9ee9553180ab5fcc5764128
MD5 d466b78ebc21b9b3365516f60cac3810
BLAKE2b-256 c238a7b8366e3d478c74b56bda22294ffd29e0792046b76dad7a196855c38e6a

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 7f8664cf3b45fca05fed5c38e20dc79ef1dd0f3e1e61254c8ce6ddb1060035ce
MD5 3d463924c30389ee9da55c131940591f
BLAKE2b-256 25665da40dc9c589424aee56370d3441cd49470e720d91702946f3e1101f9a4f

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f3ae9f304727f5224e17e1ba376c21efdd60685f537404d03f51dd427842633c
MD5 8c4b6222558384980011d9f285275a5b
BLAKE2b-256 6f5fe960913ce6c0fd1fc47b7f354bd77096d894760ba898c18c82a07acf002f

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 899529147afc2758d05c44cccef66b32a36b1217a8718092ff2b90859c3d2241
MD5 e4e31e2b30004a8dca812541cb2b5671
BLAKE2b-256 e89d59a69f9acf6a59dc76deb157c4138ca81d416ac4611d9272e936c1957cd7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page