Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg https://img.shields.io/pypi/pyversions/scikit-network.svg

Python package for the analysis of large graphs:

  • Memory-efficient representation as sparse matrices in the CSR format of scipy

  • Fast algorithms

  • Simple API inspired by scikit-learn

Resources

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.19.1 (2020-09-09)

  • Fix visualization features

  • Fix documentation

0.19.0 (2020-09-02)

  • Added link prediction module

  • Added pie-node visualization of memberships

  • Added Weisfeiler-Lehman graph coloring

  • Added Force Atlas 2 graph layout

  • Added triangle listing algorithm for directed and undirected graph

  • Added k-core decomposition algorithm

  • Added k-clique listing algorithm

  • Added color map option in visualization module

  • Updated NetSet URL

0.18.0 (2020-06-08)

  • Added Katz centrality

  • Refactor connectivity module into paths and topology

  • Refactor Diffusion into Dirichlet

  • Added parsers for adjacency list TSV and GraphML

  • Added shortest paths and distances

0.17.0 (2020-05-07)

  • Add clustering by label propagation

  • Add models

  • Add function to build graph from edge list

  • Change a parameter in SVG visualization functions

  • Minor corrections

0.16.0 (2020-04-30)

  • Refactor basics module into connectivity

  • Cython version for label propagation

  • Minor corrections

0.15.2 (2020-04-24)

  • Clarified requirements

  • Minor corrections

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.19.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.19.1-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.19.1-cp38-cp38-manylinux2010_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.19.1-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.19.1-cp37-cp37m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.19.1-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.19.1-cp37-cp37m-manylinux2010_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.19.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.19.1-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.19.1-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.19.1-cp36-cp36m-manylinux2010_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.19.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.19.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8ba7c86cfae86f6ecb0580bf0127d09ac206b92224da238ed91d6581bb58474e
MD5 9fb2f8fd743091305a93552bb83a5f10
BLAKE2b-256 ba223ead4fea77f5e88f611c25a5f9c1e7cc41671922dce24c43b6b6d9e3b762

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 757e5326232ba147a087bf2cf3d8d84387ed5cc4aba8c5968beeca79532e8dde
MD5 8a79b2ac2b27e65fac5229421580d691
BLAKE2b-256 531390c91cca8aa03ede72dc071be2443892e6af0f86c7d625c864dabd083d74

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2787350db379713d35161c5f1e3282c72ed090e2fda1ef9708d774c521edc3fe
MD5 9495f3aed31017bfc05e71c772b2f95e
BLAKE2b-256 9ee91a91d6565cbf28840c0c100621956dd3f866303fa281c76ddc29c22ceccb

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8b6bb81ba227728ffc3b6cf7763d15cdd642ceb2d4bd370099b785e70517ba2
MD5 923eff523b796858a5c2e037b6ae7007
BLAKE2b-256 bb9ea905fe1bf897cfcad715ba5a357a81f1456c922c051b777d3b0dcae1bc37

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e54f53f6874880a08888e9852c61393bdbf1ed2de08db9e88e9661fa882867d3
MD5 19812f329d5103f259e5147f8124bdbc
BLAKE2b-256 adac27e5b94e6f3dd4c8682fe04ead470ba74c3e575057aa91f0b8e74a80c881

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9eb5c181197393df2c12ac9508d90bf59e8c7d6018da860f3b20850db92e97ad
MD5 035e735edc054fabcdf447ce5b178c8f
BLAKE2b-256 73e7e5f918c336e8507867d704a9f449b464c28835264212ade42b07789cad6a

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 845f54d3f84c7ef9dca90550ea1bb0e1946d704b019615328a95c0265c2e1288
MD5 3a078719d9d817312b4253a4e3e8cd50
BLAKE2b-256 4a98acde347b01b54b1d34c7c8d7acc406a022c9d9ba4b91258e77ff99b3ff81

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9be6e6799058242196672fdaa818dc8dc1844dcf330ce7c923eb4e0b7e5a3a4c
MD5 b2d7a60311533321f6ad4c46aa62cee9
BLAKE2b-256 5055708fc33fa1b3691ab0a68715dd0a0b44e6a3d5cf83edf781a6f729438c01

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8df12cba62f36c48d2cd94d85103015ac4d2324c90db07f13e77db8fec9e635c
MD5 5f14a96469bd0a59ebcd6618e65b8a03
BLAKE2b-256 1946b721cfb8bec6ac8267010ea7a72c3159e9405ca0c8cf2d40cdd8c221a204

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a223f17ef772f7575e7a6a320d7c2c7c489c496bf4b6dac62f0d029215b68b72
MD5 05c070e94827b20fcff1270e7b0319cb
BLAKE2b-256 cbb6caf4c0625b9dafa9c7d15174d2e9932108e07a1ae0d248c4ba1c658bd5d3

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2a95ff57c71f451851971e015f223cd7c28848ed75ac4923f53fa8b7b27eb4c1
MD5 b0e390a1b4c38937c525e0d270eb97af
BLAKE2b-256 287d683ec44de004b722cc6dd5d3f3196c4f787e7833e4be20d067949aa70dd1

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09c61e50cc4a45e1718c937f57181c564a6f31f42ec40b44444606fc2b1faeba
MD5 0ada6e221842837c6270e2c76db5c0d5
BLAKE2b-256 7793577d1135172390407ae79d51e6ebd8d2921eea6a490144a7ee033874056c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page