Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://travis-ci.org/sknetwork-team/scikit-network.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg https://img.shields.io/pypi/pyversions/scikit-network.svg

Python package for the analysis of large graphs:

  • Memory-efficient representation as sparse matrices in the CSR format of scipy

  • Fast algorithms

  • Simple API inspired by scikit-learn

Resources

Quickstart

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

History

0.19.2 (2020-09-14)

  • Fix documentation with new dataset website URLs.

0.19.1 (2020-09-09)

  • Fix visualization features

  • Fix documentation

0.19.0 (2020-09-02)

  • Added link prediction module

  • Added pie-node visualization of memberships

  • Added Weisfeiler-Lehman graph coloring

  • Added Force Atlas 2 graph layout

  • Added triangle listing algorithm for directed and undirected graph

  • Added k-core decomposition algorithm

  • Added k-clique listing algorithm

  • Added color map option in visualization module

  • Updated NetSet URL

0.18.0 (2020-06-08)

  • Added Katz centrality

  • Refactor connectivity module into paths and topology

  • Refactor Diffusion into Dirichlet

  • Added parsers for adjacency list TSV and GraphML

  • Added shortest paths and distances

0.17.0 (2020-05-07)

  • Add clustering by label propagation

  • Add models

  • Add function to build graph from edge list

  • Change a parameter in SVG visualization functions

  • Minor corrections

0.16.0 (2020-04-30)

  • Refactor basics module into connectivity

  • Cython version for label propagation

  • Minor corrections

0.15.2 (2020-04-24)

  • Clarified requirements

  • Minor corrections

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.19.2-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.19.2-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8Windows x86

scikit_network-0.19.2-cp38-cp38-manylinux2010_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

scikit_network-0.19.2-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.19.2-cp37-cp37m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.19.2-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7mWindows x86

scikit_network-0.19.2-cp37-cp37m-manylinux2010_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

scikit_network-0.19.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_network-0.19.2-cp36-cp36m-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_network-0.19.2-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6mWindows x86

scikit_network-0.19.2-cp36-cp36m-manylinux2010_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

scikit_network-0.19.2-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit_network-0.19.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ef1f241cd4611498eec6a92f86d7e619f180edac42d1b68e53bab84c88966e63
MD5 924bfc3682a0f54d2753b56ea8d17002
BLAKE2b-256 9b21ce16884efa89059b57c429dde29fc7d139f25f0dbd03fd47076ee07e85fe

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 edf84d6daca331aabb8ceb811ea5282656831c6a68a40c90ec6eaab657fc9c7a
MD5 0a11064586ccf8f96a4093e882ecb773
BLAKE2b-256 45fb052c3d63a2917beac3cf15b14f42263e659f6c7989c6d6f9bf1794ff262c

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7ac6fb9eb4a56848e90efa2709c325dba64211c876f0b6c14339b8d681ddcab7
MD5 99c3d9347971bce64a1e49fd9bad1957
BLAKE2b-256 c2822e6fc5f49ea907088b5e7ced193da83b05938d4fc836826f54158c967b3c

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 652c16d896a0fc57abe544a666781e184084d42c90bd4704c6652eabd755c695
MD5 269ef70a5cd1da91b7794d1e8dc1f6e3
BLAKE2b-256 61d4f5e637b55499c6d95538556cedff81c0f1e4683f97eadcf2944e17a7a4a2

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f309917e825a46cb385ff03b2cefb776959e68d170989ecd7bdfd50d36795796
MD5 c2d912f12abccfbbf09641eb8fae391f
BLAKE2b-256 3c7e1847d2281830739c7d834e685d8e054f6d556e36f7be2514418d1dbf8a87

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5152fe79677b63af4f48b74c209b766d203ee941495fc01bc805774999275f14
MD5 e6cdb645d6288a3da973b025f42396d4
BLAKE2b-256 d05c921fb550d364bca6445b482ca9e91a3c1754d0930b28da13aa4bbe776826

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0fddebe88dbb02ca59b536d1ffcd4eb9d4bcc0b0b5ea0eda0d153fba75e12cbd
MD5 9f625d9b99a792be2dfdc0590ae1446a
BLAKE2b-256 da8f3a5bde5e07c9d0c43f7d5062c2a6cbfec0cb9019947ce3c78a487ed39f37

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 292c14a91a9fe223040cc75915aa2a3f91d509e4862fe0294c3ee872b502971f
MD5 509fc238b90b34ccdf3f958515b72499
BLAKE2b-256 ea9c465eed926714c182771aef173267b99dd8a83513e97330a1249ba0a79c3c

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 12ee796e0ecc9a8910c1f5cff7440721bdf84961f1256a634755ef52ffe51ce7
MD5 c9cf1cbb213bf71d3eae5a0e38933381
BLAKE2b-256 3ea1b6ce754d40fbca0d3bcd479827e1f3239a995a43e9beab42631883e903b7

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.0

File hashes

Hashes for scikit_network-0.19.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1efff729c7458dc8e8259fe0515371cef2a96f02b334ff7df615cce1f0acd50f
MD5 30585cb2767d321da72e468f310ca7e8
BLAKE2b-256 b5fd78215d0c19a15f5c76910555357bb94b29a3e8e4ac03b384c14f47d7bfbe

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.7

File hashes

Hashes for scikit_network-0.19.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7f06f6af24a2660b91b319948457d66a9afb70cc7f4421c607d840cf3437ddec
MD5 2d7748ea81fc56f4a9ffc400e6a09621
BLAKE2b-256 1c4593565aa35de1d1df9df25c7eef62214ae47f54956b7a553ab962fc15f317

See more details on using hashes here.

File details

Details for the file scikit_network-0.19.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.4

File hashes

Hashes for scikit_network-0.19.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a11bc86b94ea11c963ff7405e2a646b91f222ab09c53035254cf1449420f9c8
MD5 2379dff98c7117d74b9495a0f1c5ee8b
BLAKE2b-256 9375827cd5745bcf49df466f98bc1f87c376163da8a06df6872e447e79666292

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page