Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg https://img.shields.io/pypi/pyversions/scikit-network.svg

Python package for the analysis of large graphs:

  • Memory-efficient representation as sparse matrices in the CSR format of scipy

  • Fast algorithms

  • Simple API inspired by scikit-learn

Resources

Quick Start

Install scikit-network:

$ pip install scikit-network

Import scikit-network in a Python project:

import sknetwork as skn

See examples in the tutorials; the notebooks are available here.

Citing

If you want to cite scikit-network, please refer to the publication in the Journal of Machine Learning Research:

@article{JMLR:v21:20-412,
  author  = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
  title   = {Scikit-network: Graph Analysis in Python},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {185},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/20-412.html}
}

History

0.25.0 (2022-03-15)

  • Add use cases as notebooks, by Thomas Bonald

  • Add list/dict of neighbors for building graphs, by Thomas Bonald

  • Update Spectral embedding, by Thomas Bonald

  • Update Block models, by Thomas Bonald (#507)

  • Fix Tree sampling divergence, by Thomas Bonald (#505)

  • Allow parsers to return weighted graphs, by Thomas Bonald

  • Add Apple Silicon and Python 3.10 wheels, by Quentin Lutz (#503)

0.24.0 (2021-07-27)

  • Merge Bi* algorithms (e.g., BiLouvain -> Louvain) by Thomas Bonald (#490)

  • Transition from Travis to Github actions by Quentin Lutz (#488)

  • Added sdist build for conda recipes

  • Added name position for graph visualization

  • Removed randomized algorithms

0.23.1 (2021-04-24)

  • Updated NumPy and SciPy requirements

0.23.0 (2021-04-23)

  • New push-based implementation of PageRank by Wenzhuo Zhao (#475)

  • Fixed cut_balanced in hierarchy

  • Dropped Python 3.6, wheels for Python 3.9 (switched to manylinux2014)

0.22.0 (2021-02-09)

  • Added hierarchical Louvain embedding by Quentin Lutz (#468)

  • Doc fixes and updates

  • Requirements update

0.21.0 (2021-01-29)

  • Added random projection embedding by Thomas Bonald (#461)

  • Added PCA-based embedding by Thomas Bonald (#461)

  • Added 64-bit support for Louvain by Flávio Juvenal (#450)

  • Added verbosity options for dataset loaders

  • Fixed Louvain embedding

  • Various doc and tutorial updates

0.20.0 (2020-10-20)

  • Added betweenness algorithm by Tiphaine Viard (#444)

0.19.3 (2020-09-17)

  • Added Louvain-based embedding

  • Fix documentation with new dataset website URLs

0.19.2 (2020-09-14)

  • Fix documentation with new dataset website URLs.

0.19.1 (2020-09-09)

  • Fix visualization features

  • Fix documentation

0.19.0 (2020-09-02)

  • Added link prediction module

  • Added pie-node visualization of memberships

  • Added Weisfeiler-Lehman graph coloring by Pierre Pebereau and Alexis Barreaux (#394)

  • Added Force Atlas 2 graph layout by Victor Manach and Rémi Jaylet (#396)

  • Added triangle listing algorithm for directed and undirected graph by Julien Simonnet and Yohann Robert (#376)

  • Added k-core decomposition algorithm by Julien Simonnet and Yohann Robert (#377)

  • Added k-clique listing algorithm by Julien Simonnet and Yohann Robert (#377)

  • Added color map option in visualization module

  • Updated NetSet URL

0.18.0 (2020-06-08)

  • Added Katz centrality

  • Refactor connectivity module into paths and topology

  • Refactor Diffusion into Dirichlet

  • Added parsers for adjacency list TSV and GraphML

  • Added shortest paths and distances

0.17.0 (2020-05-07)

  • Add clustering by label propagation

  • Add models

  • Add function to build graph from edge list

  • Change a parameter in SVG visualization functions

  • Minor corrections

0.16.0 (2020-04-30)

  • Refactor basics module into connectivity

  • Cython version for label propagation

  • Minor corrections

0.15.2 (2020-04-24)

  • Clarified requirements

  • Minor corrections

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-network-0.25.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.25.0-cp310-cp310-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.10Windows x86-64

scikit_network-0.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scikit_network-0.25.0-cp310-cp310-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

scikit_network-0.25.0-cp310-cp310-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

scikit_network-0.25.0-cp39-cp39-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.9Windows x86-64

scikit_network-0.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scikit_network-0.25.0-cp39-cp39-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

scikit_network-0.25.0-cp39-cp39-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

scikit_network-0.25.0-cp38-cp38-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.8Windows x86-64

scikit_network-0.25.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

scikit_network-0.25.0-cp38-cp38-macosx_11_0_arm64.whl (1.6 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

scikit_network-0.25.0-cp38-cp38-macosx_10_9_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_network-0.25.0-cp37-cp37m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_network-0.25.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

scikit_network-0.25.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file scikit-network-0.25.0.tar.gz.

File metadata

  • Download URL: scikit-network-0.25.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit-network-0.25.0.tar.gz
Algorithm Hash digest
SHA256 6248e8de1919bf92ed823a2dea8293666a65f6bde607f3dd5f11cd4ba3a6a0a0
MD5 0415d73ed123dfd62e02eafa3cf8b8d4
BLAKE2b-256 041176593dd14219ef8a421d2d57fabd8cdac50b906867fc80c437b1f7688789

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 54efb15991e80c1a7765549c26465c7e1d6121d33e49c1b0780aa89ba7b5a062
MD5 1c97458ef078669a61ba7b4d3ec3eb4a
BLAKE2b-256 44974e1f2baf93107c3fc637a90b1e039bf75568131f063ea2f45c311e693825

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b14c7ed6d77de3fbb2b6a28ac6a0b91f9e1d5fa2f638a63e7187dc2f4b563ee5
MD5 c3a3dc00c963fb363ba787ccd47ce5c3
BLAKE2b-256 ceac75ee1c22749e1c0657b6da2dcbf8116cf460db681d2812bc9b022cd3e31a

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c351080972b227dea0e0e5fabd91167e78bdf55338973619dbc939fdbd5fc34
MD5 cf5f90df4490f1e95f23313a6a978259
BLAKE2b-256 fd1202807475acbe239b8f5333d6375d705a0ef41187d278b8b1b997d5f9ecc0

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 269e4290e5e415e83bf4bda1b4c29c3992b0d00402c7ed24e7cf115c5ca9abe4
MD5 15b8169db321c5ebf6f7cd50fe649b96
BLAKE2b-256 6c5ba0bbad126f1a60b91c6bcd936ff06eb931ddc8551e638f65b45fb4b1d2ed

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f4b75884f074ad4f84ec52516c08e944cef5062ee1e54f204b763e56e38c1c70
MD5 e5ad7bb8944600b7d57986191d39a5ff
BLAKE2b-256 e3a05a19fa5c9216d11731e5a7fe9e36f561d049e7bec565a92a8fabcb2708b2

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 8.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0d9b41721100ff09e2f1e5ba164a3a51db5a944b3c4c76575fd364b440c14b2
MD5 cab7d4ce9772af7dc808c511b5556bb7
BLAKE2b-256 1168f6351fa359b95bc1c1d7858b8ad782af8e113a4dd244de3455265fdf9e94

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 828177c9066b78e982fcd507fe9874d3db7ce807ce6a69f7017ddbaef34dee75
MD5 d11e45b47f3766c85402c032e8d9129a
BLAKE2b-256 3a6c545b9408c7371cd96956e15dd6ccf49dac3050244745b32916b2526fb280

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd94291a26a844836a20280eaf9d7e170f876414619a4dc83bfdad735a4f1583
MD5 fb403cf50273db05a1bb7f3b05327a83
BLAKE2b-256 a04652c5febc2a058763227cf45072e75ae2f9198b08b522d39ade0c88e26867

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ef6dcae555517f942706e8fc6704be8f9b464e56f5e071907151e44911be1f38
MD5 3274d682b94d9fc52270b21b590c7179
BLAKE2b-256 6a417b1d0360d1fcfaca873d2e45aaca4c0eaddd7564a2f5fbdb1380a2771112

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 8.6 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e879e74cc1d2a007382cf4de1b94ff7e01bad2f22ffaff75a2671ea358c6f13a
MD5 ba59617c25a8eae28fc13384ace6340f
BLAKE2b-256 2c411421c47c1726aa6beea6158e78d71b0589a674b1abe3a5490628601cfd44

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f47c5a779d2c76a1eea13361374c6fc7d8dbe24306a5a500d47492d71d2a4cb
MD5 33cd8e3a1cccdc40382ff5e72002ced2
BLAKE2b-256 40f7d40f7e284fb2f14d597863b3dc807201270923d24cd7491b29fb1e4aeeb4

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e4387112a5ed14c75b4d5f59c317a83e706373bec7c65c620da4119b264c711
MD5 ff5293fe82bb4b8f58ce2d9f6177c3aa
BLAKE2b-256 b1355420f2243f1e6e039ff9f33185eee33b57d33baeed9e062177d73aad0eef

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ec21ea5993579b1006cf3b4163572c0c98191be6b4f00316f2689362fac59227
MD5 e27c149360946c3ad9df6b1e593b3ef1
BLAKE2b-256 16a4f57cdee9f7f404cd9e4f7b143f8eb678b2e2b0ae71018ae5fec062129e65

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d489e3c5f5d8dbfc30a4f6606067c8299bd2fa922ede69ad09f26be1738409f
MD5 7f2247e0449459196ac36058acf2d3f8
BLAKE2b-256 8eaa6d320b8827c726e56620ac39c7e327edeee941ca92982fa9757015ed4407

See more details on using hashes here.

File details

Details for the file scikit_network-0.25.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: scikit_network-0.25.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for scikit_network-0.25.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c31477959a30d174b341f4a20801d7e9a3c4b1b80871c9eff905fd4bf77a829e
MD5 9413b78253776f8281a42d5d3e639cd4
BLAKE2b-256 acf55fde219fb6bcd6284f1d750f5f559dd0f1004b17d190081263ac5590fd61

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page