Skip to main content

Graph algorithms

Project description

logo sknetwork https://img.shields.io/pypi/v/scikit-network.svg https://github.com/sknetwork-team/scikit-network/actions/workflows/ci_checks.yml/badge.svg Documentation Status https://codecov.io/gh/sknetwork-team/scikit-network/branch/master/graph/badge.svg https://img.shields.io/pypi/pyversions/scikit-network.svg

Free software library in Python for machine learning on graphs:

  • Memory-efficient representation of graphs as sparse matrices in scipy format

  • Fast algorithms

  • Simple API inspired by scikit-learn

Resources

Quick start

Install scikit-network:

$ pip install scikit-network

Import scikit-network:

import sknetwork

Overview

An overview of the package is presented in this notebook.

Documentation

The documentation is structured as follows:

  • Getting started: First steps to install, import and use scikit-network.

  • User manual: Description of each function and object of scikit-network.

  • Tutorials: Application of the main tools to toy examples.

  • Examples: Examples combining several tools on specific use cases.

  • About: Authors, history of the library, how to contribute, index of functions and objects.

Citing

If you want to cite scikit-network, please refer to the publication in the Journal of Machine Learning Research:

@article{JMLR:v21:20-412,
  author  = {Thomas Bonald and Nathan de Lara and Quentin Lutz and Bertrand Charpentier},
  title   = {Scikit-network: Graph Analysis in Python},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {185},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/20-412.html}
}

History

0.33.0 (2024-07-16)

  • Add Python 3.12

  • Drop Python 3.8

0.32.1 (2024-04-02)

  • Fix documentation

  • Fix wheel upload

0.32.0 (2024-03-29)

  • Add Leiden clustering algorithm

  • Add k-center clustering algorithm

  • Add functions to detect and break cycles

  • Add damping factor in diffusion

  • Fix F1 scores

  • Remove hierarchical Louvain embedding

  • Get clustering coefficient for directed graphs

0.31.0 (2023-05-22)

  • Add Python 3.11

  • Add set_param / get_param to algorithms, suggested by Franz Kiraly (#557)

  • Compute shortest paths by matrix-vector multiplications

  • Make tools on topology (cliques, code-decomposition, etc.) as functions

  • Rename parameter membership -> probs for soft classification / clustering

  • Add softmax to classification by diffusion

0.30.0 (2023-04-12)

  • Add overview

  • Add predict_proba method to classification and clustering

0.29.0 (2023-03-30)

  • Change API for clustering (predict / transform)

  • Change API for classification (seeds -> labels)

  • Change API for ranking (seeds -> weights)

  • Change API for GNN (same as classifiers)

  • Remove first order methods for link prediction

  • Add nearest neighbor methods for link prediction

  • Add KNN classifier without embedding

  • Add TF-IDF

  • Solve security issues by upgrade of wheels and ipython

0.28.3 (2023-01-06)

  • Drop Python 3.7

  • Update Numpy requirement

0.28.2 (2022-11-30)

  • Allow Python 3.7, by Thomas Bonald

  • Fix input format for KMeans, issue #548 raised by @sgerbe

0.28.1 (2022-11-22)

  • Fix sampling for GraphSage, by Simon Delarue

  • Fix leakage on GNNs, by Thomas Bonald and Simon Delarue

  • Update tutorial on GNNs with node inference, by Thomas Bonald and Simon Delarue

0.28.0 (2022-11-16)

  • Update Graph neural networks (e.g., add GraphSAGE), by Simon Delarue

  • Clean data home folder (set one folder per dataset collection, NetSet, Konect, …), by Thomas Bonald

  • Improve classification by diffusion, setting -1 to unreached nodes, by Thomas Bonald

  • Fix bug on modularity, raised by Alessandro (#543)

  • Clean up source distribution, by Nicholas Bollweg (#544)

  • Safe file extraction, by TrellixVulnTeam

  • Fix bug on dendrogram cut, raised by Nina Sachdev (#546)

  • Add a function to aggregate a graph per label, by Thomas Bonald

0.27.1 (2022-07-29)

  • Fix documentation

0.27.0 (2022-07-29)

  • Drop Python 3.7

  • Update NumPy and SciPy requirements

  • Add graph neural networks, by Simon Delarue (#533)

  • Add fit_predict / fit_transform where appropriate, by Thomas Bonald

  • Add Louvain hierarchical clustering (bottom-up), by Thomas Bonald

  • Improve classification by diffusion (vectorial), by Thomas Bonald

  • Add F1 scores for classification, by Thomas Bonald

  • Add cosine similarity metric for embeddings, by Thomas Bonald

  • Add acyclic test for undirected graphs, by Thomas Bonald

  • Update algorithms to accept all sparse matrix formats of scipy, by Thomas Bonald

0.26.0 (2022-05-03)

  • Add module on regression, by Thomas Bonald

  • Add connected components for bipartite graphs, by Thomas Bonald

  • Update functions for loading graphs, by Thomas Bonald

  • Fix shuffling nodes in Louvain (issue #521), by Thomas Bonald

  • Add radius and eccentricity metrics, by Henry Carscadden (#522)

  • Add new use case (recommendation), by Thomas Bonald

0.25.0 (2022-03-15)

  • Add use cases as notebooks, by Thomas Bonald

  • Add list/dict of neighbors for building graphs, by Thomas Bonald

  • Update Spectral embedding, by Thomas Bonald

  • Update Block models, by Thomas Bonald (#507)

  • Fix Tree sampling divergence, by Thomas Bonald (#505)

  • Allow parsers to return weighted graphs, by Thomas Bonald

  • Add Apple Silicon and Python 3.10 wheels, by Quentin Lutz (#503)

0.24.0 (2021-07-27)

  • Merge Bi* algorithms (e.g., BiLouvain -> Louvain) by Thomas Bonald (#490)

  • Transition from Travis to Github actions by Quentin Lutz (#488)

  • Added sdist build for conda recipes

  • Added name position for graph visualization

  • Removed randomized algorithms

0.23.1 (2021-04-24)

  • Updated NumPy and SciPy requirements

0.23.0 (2021-04-23)

  • New push-based implementation of PageRank by Wenzhuo Zhao (#475)

  • Fixed cut_balanced in hierarchy

  • Dropped Python 3.6, wheels for Python 3.9 (switched to manylinux2014)

0.22.0 (2021-02-09)

  • Added hierarchical Louvain embedding by Quentin Lutz (#468)

  • Doc fixes and updates

  • Requirements update

0.21.0 (2021-01-29)

  • Added random projection embedding by Thomas Bonald (#461)

  • Added PCA-based embedding by Thomas Bonald (#461)

  • Added 64-bit support for Louvain by Flávio Juvenal (#450)

  • Added verbosity options for dataset loaders

  • Fixed Louvain embedding

  • Various doc and tutorial updates

0.20.0 (2020-10-20)

  • Added betweenness algorithm by Tiphaine Viard (#444)

0.19.3 (2020-09-17)

  • Added Louvain-based embedding

  • Fix documentation with new dataset website URLs

0.19.2 (2020-09-14)

  • Fix documentation with new dataset website URLs.

0.19.1 (2020-09-09)

  • Fix visualization features

  • Fix documentation

0.19.0 (2020-09-02)

  • Added link prediction module

  • Added pie-node visualization of memberships

  • Added Weisfeiler-Lehman graph coloring by Pierre Pebereau and Alexis Barreaux (#394)

  • Added Force Atlas 2 graph layout by Victor Manach and Rémi Jaylet (#396)

  • Added triangle listing algorithm for directed and undirected graph by Julien Simonnet and Yohann Robert (#376)

  • Added k-core decomposition algorithm by Julien Simonnet and Yohann Robert (#377)

  • Added k-clique listing algorithm by Julien Simonnet and Yohann Robert (#377)

  • Added color map option in visualization module

  • Updated NetSet URL

0.18.0 (2020-06-08)

  • Added Katz centrality

  • Refactor connectivity module into paths and topology

  • Refactor Diffusion into Dirichlet

  • Added parsers for adjacency list TSV and GraphML

  • Added shortest paths and distances

0.17.0 (2020-05-07)

  • Add clustering by label propagation

  • Add models

  • Add function to build graph from edge list

  • Change a parameter in SVG visualization functions

  • Minor corrections

0.16.0 (2020-04-30)

  • Refactor basics module into connectivity

  • Cython version for label propagation

  • Minor corrections

0.15.2 (2020-04-24)

  • Clarified requirements

  • Minor corrections

0.15.1 (2020-04-21)

  • Added OpenMP support for all platforms

0.15.0 (2020-04-20)

  • Updated ranking module : new pagerank solver, new HITS params, post-processing

  • Polynomes in linear algebra

  • Added meta.name attribute for Bunch

  • Minor corrections

0.14.0 (2020-04-17)

  • Added spring layout in embedding

  • Added label propagation in classification

  • Added save / load functions in data

  • Added display edges parameter in svg graph exports

  • Corrected typos in documentation

0.13.3 (2020-04-13)

  • Minor bug

0.13.2 (2020-04-13)

  • Added wheels for multiple platforms (OSX, Windows (32 & 64 bits) and many Linux) and Python version (3.6/3.7/3.8)

  • Documentation update (SVG dendrograms, tutorial updates)

0.13.1a (2020-04-09)

  • Minor bug

0.13.0a (2020-04-09)

  • Changed from Numba to Cython for better performance

  • Added visualization module

  • Added k-nearest neighbors classifier

  • Added Louvain hierarchy

  • Added predict method in embedding

  • Added soft clustering to clustering algorithms

  • Added soft classification to classification algorithms

  • Added graphs in data module

  • Various API change

0.12.1 (2020-01-20)

  • Added heat kernel based node classifier

  • Updated loaders for WikiLinks

  • Fixed file-related issues for Windows

0.12.0 (2019-12-10)

  • Added VerboseMixin for verbosity features

  • Added Loaders for WikiLinks & Konect databases

0.11.0 (2019-11-28)

  • sknetwork: new API for bipartite graphs

  • new module: Soft node classification

  • new module: Node classification

  • new module: data (merge toy graphs + loader)

  • clustering: Spectral Clustering

  • ranking: new algorithms

  • utils: K-neighbors

  • hierarchy: Spectral WardDense

  • data: loader (Vital Wikipedia)

0.10.1 (2019-08-26)

  • Minor bug

0.10.0 (2019-08-26)

  • Clustering (and related metrics) for directed and bipartite graphs

  • Hierarchical clustering (and related metrics) for directed and bipartite graphs

  • Fix bugs on embedding algorithms

0.9.0 (2019-07-24)

  • Change parser output

  • Fix bugs in ranking algorithms (zero-degree nodes)

  • Add notebooks

  • Import algorithms from scipy (shortest path, connected components, bfs/dfs)

  • Change SVD embedding (now in decreasing order of singular values)

0.8.2 (2019-07-19)

  • Minor bug

0.8.1 (2019-07-18)

  • Added diffusion ranking

  • Minor fixes

  • Minor doc tweaking

0.8.0 (2019-07-17)

  • Changed Louvain, BiLouvain, Paris and PageRank APIs

  • Changed PageRank method

  • Documentation overhaul

  • Improved Jupyter tutorials

0.7.1 (2019-07-04)

  • Added Algorithm class for nicer repr of some classes

  • Added Jupyter notebooks as tutorials in the docs

  • Minor fixes

0.7.0 (2019-06-24)

  • Updated PageRank

  • Added tests for Numba versioning

0.6.1 (2019-06-19)

  • Minor bug

0.6.0 (2019-06-19)

  • Largest connected component

  • Simplex projection

  • Sparse Low Rank Decomposition

  • Numba support for Paris

  • Various fixes and updates

0.5.0 (2019-04-18)

  • Unified Louvain.

0.4.0 (2019-04-03)

  • Added Louvain for directed graphs and ComboLouvain for bipartite graphs.

0.3.0 (2019-03-29)

  • Updated clustering module and documentation.

0.2.0 (2019-03-21)

  • First real release on PyPI.

0.1.1 (2018-05-29)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-network-0.33.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_network-0.33.0-cp312-cp312-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.12Windows x86-64

scikit_network-0.33.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

scikit_network-0.33.0-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

scikit_network-0.33.0-cp312-cp312-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

scikit_network-0.33.0-cp311-cp311-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.11Windows x86-64

scikit_network-0.33.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

scikit_network-0.33.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

scikit_network-0.33.0-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

scikit_network-0.33.0-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10Windows x86-64

scikit_network-0.33.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scikit_network-0.33.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

scikit_network-0.33.0-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

scikit_network-0.33.0-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9Windows x86-64

scikit_network-0.33.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scikit_network-0.33.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

scikit_network-0.33.0-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file scikit-network-0.33.0.tar.gz.

File metadata

  • Download URL: scikit-network-0.33.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for scikit-network-0.33.0.tar.gz
Algorithm Hash digest
SHA256 f7f7cc02eb4267b16a9383f64626152e59ba435d6d77b1a35665b6fc1bcf572d
MD5 5d25647c5f6cf0b6b2509f6c3e537cf5
BLAKE2b-256 efad57fae75c67bc39d21209345b3497a074010b9e5c7f0e6c03b30d614d7f84

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3e337625e95e010c7e90c02092975be49791f7a2347d199fd866eb98580f7fdb
MD5 6916639dba57b54074295d9494b38639
BLAKE2b-256 16a89b8cdc32fd061e8c1166a8540c6de77379075a05ba766aa5f9f668ccc6f4

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08b84b4654658cb414ce1c1e9411d38e41a7dbd654b109d0ffd4fe63a24d4a50
MD5 0c57f39ea3fa773dad6acdd131f47770
BLAKE2b-256 1346bc6fac1ad671197afb5d49b7a295df051a10273e2639158cb044a56c4b22

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a695ef1597c5f3d520f5823e12528e90000a7af533dd4366461bdeabeb7e937
MD5 e6bb28a012c6cc3906e0b08bb990a109
BLAKE2b-256 c96a425d9215c115b0f6425b5ce6e49ac3c8e62e6b77797f6ff6f1c2dc308d32

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6570d55eae59423c2ffa73323988221935c106ec4be81c79517649f5a60ea549
MD5 cabb7f48f2f229590224a2cd63a07815
BLAKE2b-256 c804f0b62daec674002d4eaf9b64807cd821915e5fd9644ac3e61e02ae6dd5ab

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9969407c429a5d8c7f038d20afc128c635772cc938b8221d17e557d5cea8a5f4
MD5 a88c692ea3d2426093cb6d467b1b29b6
BLAKE2b-256 032ad593110729e542465e7a6690ea485fc37f3e1e18de4664c52d41be46b2e6

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df4ba0da5353098266e684d1df22ecf8da89d757af6f4ae561184f039a9ca07a
MD5 9482ec2b4f65ac9edb0fc13267cbd9fc
BLAKE2b-256 1156bc4922ffef52c9c76655e83404b476595ba8b50cb5ba477af86f0a106b71

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba46ff5acc401cd3bf8d4e4ba015d3ec0786b3318e5b9dfda57020ef9a7bf154
MD5 b49df8d4a189af2abe9d628dc533bd4f
BLAKE2b-256 7d9f50bcf7fe58f5121fb50025f0253a8f8418c796dfebc61adf61d239727e27

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d2bea9cc548003bcc031f98e6fbe689ac4528b53e0240cd61765e1d85e8678d
MD5 355846f24b36c17a59157904f24a636a
BLAKE2b-256 3a710e7baa757f27ad7b879ccae2d5558a6f08c90199a582deb3661bac5a9c2c

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 020df7d7a513434a6f0a87608b6af22c8b45088b341da39865028c103a46f845
MD5 570867c7aeffd2ac26160dbf86dd1001
BLAKE2b-256 be649ffd2423c1ec78d15138bcd36e49764dd6fa68154b92b9a63c159e5a39a4

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13856042bed89c00fe1344293f68baaf11ec55d6a8bfd79ce6f74ebea3586e3d
MD5 fabe85699a5d39ce1f0aab60c91ca5f0
BLAKE2b-256 f961127d6c75480ed1bd1d234cffbc8add9f1408a5648e4c4871714cd5929718

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0f7e535f96d0cc824504f5ff3b90772a4f6a4ffd0cebeab3d9c70f38d8ce289
MD5 155273d88fd3b2141110398d6ea2c4b3
BLAKE2b-256 76acf3eee6c0de6dbae564a03958bd505fe50383467e79a912da96aa8237a9a3

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66c4d241d4ce5d7f6d1f2dd8ceb664624c34be23cd3558e3695caaa5315f4976
MD5 437e2aa601bf2373401e29311bd627c3
BLAKE2b-256 0dab5fc5071d059c652c864f0d6ce99f8d9615126f59641ccb24614690b56309

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 404abf300b3d1436b9f4b0d49b4ea2fd3a5bbae87be0bae961e9facf9d0d38d8
MD5 23240d20671741dfe0bd85ba2577266c
BLAKE2b-256 7d71f4312850275d5b355fb1970aaeaadd41720a57c2c03ce50726934f02427a

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 818fb6b7c43c1b016b64c58f08133fc79ce51eb9f5357a22eebc2a7eeed0d8a0
MD5 646c9e2738d4849c9ede0d3a0a536135
BLAKE2b-256 2921e7f8e13eb2931b8e2a3a01a370448869d9a47916a6ae969313688986c73f

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 015ce08828743937341d2285d671abb00c66fdb26f2bdcf596b69a33c19af908
MD5 fef96cc88fe4778e1a9c3cea1091b3f5
BLAKE2b-256 7a3e4394a40eec9e139576e67220f417660d37d6fc726a61b3def82a8d41e4f7

See more details on using hashes here.

File details

Details for the file scikit_network-0.33.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_network-0.33.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d66fc49c8033457abe66fa4133f05dd09c6f1557dad3d1b5ccb30e0c1dc89c94
MD5 0ce07db9474d7fc81252bab389e348a9
BLAKE2b-256 af5e2649fa238dbef780d78b0a9b67969c2212e08985b10d7fee3ea2b2af1ba4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page