Deep neural networks without the learning cliff! A wrapper library compatible with scikit-learn.
Project description
- orphan:
scikit-neuralnetwork
Deep neural network implementation without the learning cliff! This library implements multi-layer perceptrons as a wrapper for the powerful Lasagne library that’s compatible with scikit-learn for a more user-friendly and Pythonic interface.
NOTE: This project is possible thanks to the nucl.ai Conference on July 18-20. Join us in Vienna!
Features
Thanks to the underlying Lasagne implementation, this library supports the following neural network features, which are exposed in an intuitive and well documented API:
- Activation Functions —
Nonlinear: Sigmoid, Tanh, Rectifier.
Linear: Linear, Gaussian, Softmax.
Layer Types — Convolution (greyscale and color, 2D), Dense (standard, 1D).
Learning Rules — sgd, momentum, nesterov, adadelta, adagrad, rmsprop.
Regularization — L1, L2 and dropout.
Dataset Formats — numpy.ndarray, scipy.sparse, coming soon: iterators.
If a feature you need is missing, consider opening a GitHub Issue with a detailed explanation about the use case and we’ll see what we can do.
Installation
To download and setup the latest official release, you can do so from PYPI directly:
> pip install scikit-neuralnetwork
This will install a copy of Lasagne too as a dependency. We recommend you use a virtual environment for Python.
Then, you can run the tests using nosetests -v sknn, and other samples or benchmarks are available in the examples/ folder.
Getting Started
The library supports both regressors (to estimate continuous outputs from inputs) and classifiers (to predict labels from features). This is the sklearn-compatible API:
from sknn.mlp import Classifier, Layer
nn = Classifier(
layers=[
Layer("Rectifier", units=100),
Layer("Linear")],
learning_rate=0.02,
n_iter=10)
nn.fit(X_train, y_train)
y_valid = nn.predict(X_valid)
score = nn.score(X_test, y_test)
The generated documentation as a standalone page where you can find more information about parameters, as well as examples in the User Guide.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file scikit-neuralnetwork-0.7.tar.gz
.
File metadata
- Download URL: scikit-neuralnetwork-0.7.tar.gz
- Upload date:
- Size: 33.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a08a01759ece55fdd9a16a1227a7b8d7d103b97abe60320972c9f077a9a3eb8 |
|
MD5 | 9af56af932cf3e12343e8d7ecf267997 |
|
BLAKE2b-256 | dd37bfc84fc1b1bfc7364f564469cf76d90336accf16087dfd5a1bf589bd1dd9 |