Skip to main content

Sequential model-based optimization toolbox. Forked to fix a deprecation for NumPy>1.24.

Project description

Logo

pypi conda Travis Status CircleCI Status binder gitter Zenodo DOI

Scikit-Optimize

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy.optimize here.

Approximated objective

Approximated objective function after 50 iterations of gp_minimize. Plot made using skopt.plots.plot_objective.

Install

scikit-optimize requires

  • Python >= 3.6

  • NumPy (>= 1.13.3)

  • SciPy (>= 0.19.1)

  • joblib (>= 0.11)

  • scikit-learn >= 0.20

  • matplotlib >= 2.0.0

You can install the latest release with:

pip install scikit-optimize

This installs an essential version of scikit-optimize. To install scikit-optimize with plotting functionality, you can instead do:

pip install 'scikit-optimize[plots]'

This will install matplotlib along with scikit-optimize.

In addition there is a conda-forge package of scikit-optimize:

conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on Windows.

Getting started

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

import numpy as np
from skopt import gp_minimize

def f(x):
    return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
            np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)

Read our introduction to bayesian optimization and the other examples.

Development

The library is still experimental and under heavy development. Checkout the next milestone for the plans for the next release or look at some easy issues to get started contributing.

The development version can be installed through:

git clone https://github.com/scikit-optimize/scikit-optimize.git
cd scikit-optimize
pip install -e.

Run all tests by executing pytest in the top level directory.

To only run the subset of tests with short run time, you can use pytest -m 'fast_test' (pytest -m 'slow_test' is also possible). To exclude all slow running tests try pytest -m 'not slow_test'.

This is implemented using pytest attributes. If a tests runs longer than 1 second, it is marked as slow, else as fast.

All contributors are welcome!

Making a Release

The release procedure is almost completely automated. By tagging a new release travis will build all required packages and push them to PyPI. To make a release create a new issue and work through the following checklist:

  • update the version tag in __init__.py

  • update the version tag mentioned in the README

  • check if the dependencies in setup.py are valid or need unpinning

  • check that the doc/whats_new/v0.X.rst is up to date

  • did the last build of master succeed?

  • create a new release

  • ping conda-forge

Before making a release we usually create a release candidate. If the next release is v0.X then the release candidate should be tagged v0.Xrc1 in __init__.py. Mark a release candidate as a “pre-release” on GitHub when you tag it.

Commercial support

Feel free to get in touch if you need commercial support or would like to sponsor development. Resources go towards paying for additional work by seasoned engineers and researchers.

Made possible by

The scikit-optimize project was made possible with the support of

Wild Tree Tech NYU Center for Data Science NSF Northrop Grumman

If your employer allows you to work on scikit-optimize during the day and would like recognition, feel free to add them to the “Made possible by” list.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-optimize-fix-0.9.1.tar.gz (282.3 kB view details)

Uploaded Source

Built Distribution

scikit_optimize_fix-0.9.1-py2.py3-none-any.whl (101.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit-optimize-fix-0.9.1.tar.gz.

File metadata

  • Download URL: scikit-optimize-fix-0.9.1.tar.gz
  • Upload date:
  • Size: 282.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for scikit-optimize-fix-0.9.1.tar.gz
Algorithm Hash digest
SHA256 5367a84f5b96211c78004ce56afaba9314863295932c4404372b8c50522155e0
MD5 afabb285d75c621f3a897a0a80b4fa83
BLAKE2b-256 ff1baa4c2b4a0f4f1b27cbfd207741b3fbc4a11c73a567e7cd53dc26d8efeb2e

See more details on using hashes here.

File details

Details for the file scikit_optimize_fix-0.9.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_optimize_fix-0.9.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 22ef76394e4a27dfc4ead267af8f1250c8fbd4fa11378381f30f81b82a59adf2
MD5 2b954494b989b5639f27dd5d92082ed8
BLAKE2b-256 24613a35bc9af4b4742a8325a70d24b6a5489e93aae6e897ea1e600cd5439e96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page