Skip to main content

Scikit-Learn useful pre-defined Pipelines Hub

Project description

Tests Codecov PythonVersion PyPi Docs

https://github.com/rodrigo-arenas/scikit-pipes/blob/master/docs/images/logo16.png?raw=true

Scikit-Pipes

Scikit-Learn useful pre-defined Pipelines Hub.

This package is still at an experimental stage.

Usage:

Install scikit-pipes

It’s advised to install scikit-pipes using a virtual env, inside the env use:

pip install scikit-pipes

Example: Simple Preprocessing

import pandas as pd
import numpy as np
from skpipes.pipeline import SkPipeline

data = [{"x1": 1, "x2": 400, "x3": np.nan},
        {"x1": 4.8, "x2": 250, "x3": 50},
        {"x1": 3, "x2": 140, "x3": 43},
        {"x1": 1.4, "x2": 357, "x3": 75},
        {"x1": 2.4, "x2": np.nan, "x3": 42},
        {"x1": 4, "x2": 287, "x3": 21}]

df = pd.DataFrame(data)

pipe = SkPipeline(name='median_imputer-minmax',
                  data_type="numerical")
pipe.steps
str(pipe)

pipe.fit(df)
pipe.transform(df)
pipe.fit_transform(df)

Changelog

See the changelog for notes on the changes of Sklearn-pipes

Source code

You can check the latest development version with the command:

git clone https://github.com/rodrigo-arenas/scikit-pipes.git

Install the development dependencies:

pip install -r dev-requirements.txt

Check the latest in-development documentation: https://scikit-pipes.readthedocs.io/en/latest/

Contributing

Contributions are always welcome! If you want to contribute, make sure to read the Contribution guide.

Thanks to the people who are helping with this project!

Contributors

Testing

After installation, you can launch the test suite from outside the source directory:

pytest skpipes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-pipes-0.0.1.dev2.tar.gz (6.0 kB view details)

Uploaded Source

Built Distribution

scikit_pipes-0.0.1.dev2-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file scikit-pipes-0.0.1.dev2.tar.gz.

File metadata

  • Download URL: scikit-pipes-0.0.1.dev2.tar.gz
  • Upload date:
  • Size: 6.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for scikit-pipes-0.0.1.dev2.tar.gz
Algorithm Hash digest
SHA256 b8056226cc3a631d4eaf6e41693c9373638dc43693e2c49b503d8f9a89f8b3ec
MD5 72361ef0a8b45ef1b6b42f5b8de1624d
BLAKE2b-256 27291bf472c12b6c6265bbb41b4d0a8bac8a9d246260f2350a0aa5c1d10b6bba

See more details on using hashes here.

File details

Details for the file scikit_pipes-0.0.1.dev2-py3-none-any.whl.

File metadata

  • Download URL: scikit_pipes-0.0.1.dev2-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for scikit_pipes-0.0.1.dev2-py3-none-any.whl
Algorithm Hash digest
SHA256 5b183e1b3635e76fd673c4211ca9277c84325629ee9147c665a10fbb92251bba
MD5 347d6f46c0b0c3ab0f077b44a0b51109
BLAKE2b-256 58c7f1f3ac529d1a1c17d509bead7e46f21085f1084db6b5c2d98018ace2006e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page