Skip to main content

Statistical post-hoc analysis and outlier detection algorithms

Project description

https://travis-ci.org/maximtrp/scikit-posthocs.svg?branch=master https://img.shields.io/github/issues/maximtrp/scikit-posthocs.svg https://img.shields.io/pypi/v/scikit-posthocs.svg

This Python package provides statistical post-hoc tests for pairwise multiple comparisons and outlier detection algorithms.

Features

  • Multiple comparisons parametric and nonparametric tests (some are ported from R’s PMCMR package):

    • Conover, Dunn, and Nemenyi tests for use with Kruskal-Wallis test.

    • Quade, van Waerden, and Durbin tests.

    • Conover and Nemenyi tests for use with Friedman test.

    • Student, Mann-Whitney, Wilcoxon, and TukeyHSD tests.

    All tests are capable of p adjustments for multiple pairwise comparisons.

  • Plotting functionality (e.g. significance plots).

  • Outlier detection algorithms:

    • Simple test based on interquartile range (IQR).

    • Grubbs test.

    • Tietjen-Moore test.

    • Generalized Extreme Studentized Deviate test (ESD test).

Dependencies

Compatibility

Package is compatible with Python 2 and Python 3.

Install

You can install the package with: pip install scikit-posthocs

Example

>>> import scikit_posthocs as sp
>>> x = [[1,2,3,5,1], [12,31,54], [10,12,6,74,11]]
>>> # This will return a symmetric array of p values
>>> sp.posthoc_conover(x, p_adjust = 'holm')
array([[-1.        ,  0.00119517,  0.00278329],
       [ 0.00119517, -1.        ,  0.18672227],
       [ 0.00278329,  0.18672227, -1.        ]])

Credits

Thorsten Pohlert, PMCMR author and maintainer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-posthocs-0.3.4.tar.gz (15.4 kB view details)

Uploaded Source

Built Distribution

scikit_posthocs-0.3.4-py2.py3-none-any.whl (26.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit-posthocs-0.3.4.tar.gz.

File metadata

File hashes

Hashes for scikit-posthocs-0.3.4.tar.gz
Algorithm Hash digest
SHA256 7eb492e415193899a3c5cffa271d9fa7226723a3d4ba8816fe85754ca1855e22
MD5 f664c3d801e8f6f7f8d5920ea27b2ead
BLAKE2b-256 0fae200d4e5e62c262e87e483349447fcc4ac28f79eda7155266ee944c7e1300

See more details on using hashes here.

File details

Details for the file scikit_posthocs-0.3.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_posthocs-0.3.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b17f54fe09bad978dc7acfadefb7fcaa22b601dc6524fbbe8c5c4e1668f9de6a
MD5 8b3b321e87a48a35d203ac0981e93b52
BLAKE2b-256 e6cdfe35e09c6b05e37d4c377025c55e6c45d75a5266a2e245a4fcd5f93609dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page