A science toolkit for recommender systems
Project description
Scikit-Recommender
Scikit-Recommender is an open source library for researchers of recommender systems.
Highlighted Features
- Various recommendation models
- Parse arguments from command line and ini-style files
- Diverse data preprocessing
- Fast negative sampling
- Fast model evaluation
- Convenient record logging
- Flexible batch data iterator
Installation
You have three ways to use Scikit-Recommender:
- Install from PyPI
- Install from Source
- Run without Installation
Install from PyPI
Binary installers are available at the Python package index and you can install the package from pip.
pip install scikit-recommender
Install from Source
Installing from source requires Cython and the current code works well with the version 0.29.20.
To build scikit-recommender from source you need Cython:
pip install cython==0.29.20
Then, the scikit-recommender can be installed by executing:
git clone https://github.com/ZhongchuanSun/scikit-recommender.git
cd scikit-recommender
python setup.py install
Run without Installation
Alternatively, You can also run the sources without installation. Please compile the cython codes before running:
git clone https://github.com/ZhongchuanSun/scikit-recommender.git
cd scikit-recommender
python setup.py build_ext --inplace
Usage
After installing or compiling this package, now you can run the run_skrec.py:
python run_skrec.py
You can also find examples in tutorial.ipynb.
Models
MMRec | Implementation | Paper | Publication |
---|---|---|---|
MGCN | PyTorch | Penghang Yu, et al., Multi-View Graph Convolutional Network for Multimedia Recommendation | ACM MM 2023 |
BM3 | PyTorch | Xin Zhou, et al., Bootstrap Latent Representations for Multi-modal Recommendation | WWW 2023 |
FREEDOM | PyTorch | Xin Zhou, et al., A Tale of Two Graphs: Freezing and Denoising Graph Structures for Multimodal Recommendation | ACM MM 2023 |
SLMRec | PyTorch | Zhulin Tao, et al., Self-supervised Learning for Multimedia Recommendation | TMM 2022 |
LATTICE | PyTorch | Jinghao Zhang, et al., Mining Latent Structures for Multimedia Recommendation | ACM MM 2021 |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file scikit_recommender-0.1.1-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 360.1 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea3cf74edea92829f4a67137efd297c8b684392d687e040107f22d8fff476bdd |
|
MD5 | 85ebee73f05687bfbc8088ec8d67ce6c |
|
BLAKE2b-256 | 003c3142dab70fc8a4ec1c4bb38a26defca70f90f0dcf0364922b0a786748d1d |
File details
Details for the file scikit_recommender-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.6 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c723aebd18e8e7a5482e1018c76344d4efc67e2cdf8350f11b81bc833873dc0c |
|
MD5 | 0357132a830a079c35f65bb76f2edc87 |
|
BLAKE2b-256 | 131a0c20c30d7294f9154b32b199567bef9e1271173b7e471dfcf1b9ad8dd8e7 |
File details
Details for the file scikit_recommender-0.1.1-cp311-cp311-macosx_10_9_universal2.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp311-cp311-macosx_10_9_universal2.whl
- Upload date:
- Size: 637.4 kB
- Tags: CPython 3.11, macOS 10.9+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80c90682954a8c534a87650adca4f1b7cc376117163ca552ab3c6a4839c3fd84 |
|
MD5 | 36a39bb7707fcd4252bf95568032b4ed |
|
BLAKE2b-256 | 08c294ed36a7fa176fac1667d7bbef6304fea89934130b6b94a0ed61706e31db |
File details
Details for the file scikit_recommender-0.1.1-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 359.2 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7affb44a5f6fb48abf2ec64a976da19d0bd48c7e24439a70d800fdf5fe812404 |
|
MD5 | 98b7444758d4a2506fb7fd7f8a086c71 |
|
BLAKE2b-256 | e97bd21375862189ef84accd88cdde352c80a0e41373d6cc225baa19224d35e0 |
File details
Details for the file scikit_recommender-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.5 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bf745ccf771f5a116f01d1392fb4917d87e4f6de5706c276d342416250fb7fb5 |
|
MD5 | db74ec006b6beccbb1bda37028033ffa |
|
BLAKE2b-256 | 3623117e5e9108a4c5a2c7f0e9570c598836bb29538c4286c55132a216acb45e |
File details
Details for the file scikit_recommender-0.1.1-cp310-cp310-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp310-cp310-macosx_11_0_x86_64.whl
- Upload date:
- Size: 395.8 kB
- Tags: CPython 3.10, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b73e83827d308d2091bd1f8f5bb96f78c9dd91a7942727769f036c5d48a7e978 |
|
MD5 | 7e2f8f75c89bda5020c8e40e64a12762 |
|
BLAKE2b-256 | b83cab98fa2854df8a2b92351aa8b0d77b8771f1cb720683ce1af7140d969625 |
File details
Details for the file scikit_recommender-0.1.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 391.3 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a31ff71e0742ce77cf1b5f96a36e6da4de9cba1fff0d047bbc4542cb54d170c |
|
MD5 | dc1c7cbfb6c3448719b06e1a469f46b2 |
|
BLAKE2b-256 | cef0a08cf4401ce8bf32b068b5804e3086126663d2f002e61ba39736f83ee5c9 |
File details
Details for the file scikit_recommender-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.5 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66979358abc0b5b865a7e36bbf0bbeee874c919ce7e1168a27d29a2a5288f495 |
|
MD5 | e2b414e6b8bbda8db68e9dfbf26a23dd |
|
BLAKE2b-256 | f4bee9373a49c8a4a8a124e8a4610c68e4bcfee9c756deee23c2521e882f01cf |
File details
Details for the file scikit_recommender-0.1.1-cp39-cp39-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp39-cp39-macosx_11_0_x86_64.whl
- Upload date:
- Size: 395.8 kB
- Tags: CPython 3.9, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 21d8bee40590e59bfdbb675ca9c6a6f39fb978f57e278690982098bfbf168736 |
|
MD5 | b99137944df8694c29e59977b282c633 |
|
BLAKE2b-256 | afe4eabcaf9498924256fd271a9ce02784798f8b775fab3763f14487f2d8bac3 |
File details
Details for the file scikit_recommender-0.1.1-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 392.5 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e09f6de77a9e3518cf453f3ada087a407d5eceb765bd0d6bebf28f7c1d2b7b25 |
|
MD5 | 7d9948ebb9f61797d08074e1b17cafb6 |
|
BLAKE2b-256 | 5ec2f34c50fa985e45cce7a49a4db94135222804ee495acbe416747c41d01cf9 |
File details
Details for the file scikit_recommender-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.5 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 538c2034e2f1dafe862d900d3df0501924d72e4507abf8c98d20c77e1e50478f |
|
MD5 | 3001c07f2068a12ef0b8716f19efb0cc |
|
BLAKE2b-256 | fb1c26dcda953861e4b713c6d2c7d65e2eea8e8c6d5ae1a91cf4476e026aa869 |
File details
Details for the file scikit_recommender-0.1.1-cp38-cp38-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp38-cp38-macosx_11_0_x86_64.whl
- Upload date:
- Size: 393.3 kB
- Tags: CPython 3.8, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 483917cfd2e88ba530f3f12460cb15fc4bb15cc7d3c2f7c6c3559c9ea6b819be |
|
MD5 | ab358fa70d05c2a327a8c9b06b982172 |
|
BLAKE2b-256 | 91052b5e01a5b6b293a9741269f4ccab12f8aae63238cbf180de587eca0eedce |
File details
Details for the file scikit_recommender-0.1.1-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 392.4 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a11cc6c0108ad2841d40727d65708d15a632ef77518d1b50cbdf2faaa767515 |
|
MD5 | 76c3dcfb02a053a7fbede7a086271baf |
|
BLAKE2b-256 | d4be0e0b86ce9d546dd3178f70ef372c0c8cca5c9f4e8614e89bf2c82243045b |
File details
Details for the file scikit_recommender-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 989483270af2e50ad35b28756d55923a10cacbf5729ddd5aa5972b123eb786fe |
|
MD5 | 7c3f67092ba04b371146735c2c0970ab |
|
BLAKE2b-256 | c6212d97e239eea4ae2f08b900b74aeed041c4423ad47d4ea7c9c0a89b59c155 |
File details
Details for the file scikit_recommender-0.1.1-cp37-cp37m-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp37-cp37m-macosx_11_0_x86_64.whl
- Upload date:
- Size: 397.8 kB
- Tags: CPython 3.7m, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c11840dd82d7c4859eb04d733f642bc48ec1716a055f2f63a08c78f1142b4ed |
|
MD5 | 846eacceba179b62c65e405e8923eeee |
|
BLAKE2b-256 | fdf3dc74f2f540ffe279e6c1cedd72a471c3993266f16c64003e76134d2f9a98 |
File details
Details for the file scikit_recommender-0.1.1-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 378.1 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.16 tqdm/4.64.1 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5feac6c05c6f5911279231c455f8adea713b4c93d0def75c4d0fdeb2a31678c3 |
|
MD5 | a8b42509665fa7429e6a82eff5ab1c31 |
|
BLAKE2b-256 | 67655a304ea6581302d69b693bcbdb52d5fd0f385009768c90730ea4a1238055 |
File details
Details for the file scikit_recommender-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9ff9ed99f36c332324fbc56f9d4125d5d3f5a6df1d41513f0336eef5f548d91 |
|
MD5 | 67de780bb510f8500925859cfd7b87cc |
|
BLAKE2b-256 | edf19dc30d30f03d25d331a9da85663228140f41e293b69551d31144d36b56af |
File details
Details for the file scikit_recommender-0.1.1-cp36-cp36m-macosx_10_14_x86_64.whl
.
File metadata
- Download URL: scikit_recommender-0.1.1-cp36-cp36m-macosx_10_14_x86_64.whl
- Upload date:
- Size: 381.0 kB
- Tags: CPython 3.6m, macOS 10.14+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.16 tqdm/4.64.1 importlib-metadata/4.2.0 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 70a602cf144747e2052ac6e8c38713a025e01f1152caeabebd8be81572e60df7 |
|
MD5 | b52e4f219bd83f677ba6e667a1c76553 |
|
BLAKE2b-256 | bba0f6056dae9db8b1f41cb72d6017e1f82565d597f10108ca47fa74f297d992 |