A science toolkit for recommender systems
Project description
Scikit-Recommender
Scikit-Recommender is an open source library for researchers of recommender systems.
Highlighted Features
- Various recommendation models
- Parse arguments from command line and ini-style files
- Diverse data preprocessing
- Fast negative sampling
- Fast model evaluation
- Convenient record logging
- Flexible batch data iterator
Installation
You have three ways to use Scikit-Recommender:
- Install from PyPI
- Install from Source
- Run without Installation
Install from PyPI
Binary installers are available at the Python package index and you can install the package from pip.
pip install scikit-recommender
Install from Source
Installing from source requires Cython and the current code works well with the version 0.29.20.
To build scikit-recommender from source you need Cython:
pip install cython==0.29.20
Then, the scikit-recommender can be installed by executing:
git clone https://github.com/ZhongchuanSun/scikit-recommender.git
cd scikit-recommender
python setup.py install
Run without Installation
Alternatively, You can also run the sources without installation. Please compile the cython codes before running:
git clone https://github.com/ZhongchuanSun/scikit-recommender.git
cd scikit-recommender
python setup.py build_ext --inplace
Usage
After installing or compiling this package, now you can run the run_skrec.py:
python run_skrec.py
You can also find examples in tutorial.ipynb.
Models
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for scikit_recommender-0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b11b50e524a000128f173682413df6b86e2098ca61a9a2807aef73c838a41337 |
|
MD5 | c82d92b17cf4268c229ebf0fb7aa237c |
|
BLAKE2b-256 | dadecd1a95a57a5845114ce9ca0d8544d46d7ab854984dd16ce1533a41330ca8 |
Hashes for scikit_recommender-0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb517c6b628b31e98c911dc9b01baa30c53bf367f53742e93c0d23046ae3c721 |
|
MD5 | bb822b99e7b238c91a39f38b7a004560 |
|
BLAKE2b-256 | ad55b8f6df28ff31898420d01c5f369a517b5d0c8766a7adf8b06a760cdb1ca6 |
Hashes for scikit_recommender-0.0.2-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 82b88c3902f113718699cc225e537f2ef8f4b5a18b972adf7bbc7ec53b6836e5 |
|
MD5 | 1873370fdc5bf5f2e1b00fd7fd6cfea0 |
|
BLAKE2b-256 | 9b242bb02159cb07f1f241ca203dce7db88128bb475bf241ceeeaa49cb8f7956 |
Hashes for scikit_recommender-0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63201796362b417646595eba8864f570adbd8879e7d126f86b9f98b0b2c4912d |
|
MD5 | 330b1c717680c5da582f51976b0d91bd |
|
BLAKE2b-256 | 78eebd0947b1c004074aa6261f66e56cb58c8835b6573fcf90bb0ec7d7b7a148 |
Hashes for scikit_recommender-0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 581bdf5e308cc45ea1a6159fe5f483486831447285625fe3c92f6bab5766ee62 |
|
MD5 | e1be1a0cf759c49f10d1f54458b632b7 |
|
BLAKE2b-256 | dfbd663c8525d481c2795a1b80c65fde2a393fddf0a46f9d9babdaaf16586e23 |
Hashes for scikit_recommender-0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f500de1fc27c6a1bece6896778d00023133af18e339394059f4c6905e010d2f |
|
MD5 | fe08bf5b2de53c47a502876989b14d4e |
|
BLAKE2b-256 | a231abd5c38c24efb5b2934b269723d08ef8ae7ed222219c21b4e2decd146159 |
Hashes for scikit_recommender-0.0.2-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 15230d5018df5a9b172756f35c5a3ee7532636921d8968e645c5b912e4e94469 |
|
MD5 | f0ba36b41c92b978e584a1354846c6ea |
|
BLAKE2b-256 | dcb3ac01acc0f6b93540e185ea1cdb418a545ffc99cafc39af84930e0e346a9d |
Hashes for scikit_recommender-0.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d04cdd0aef3b9a94e0c4a8f80cd1e4a986a8aeb3d7a7f30034a7becb18b69fb |
|
MD5 | 0eafd274715bef6e1efeaf02def7c326 |
|
BLAKE2b-256 | f423cf3aafdbe02be123263b4ec6d37bee5bfe056542aae7a7d10f23b3e81ff2 |