Skip to main content

A scikit framework for joint analysis of Riboseq and RNAseq data

Project description

Getting Started
###############

This document will show you how to install and run Scikit-ribo.

What is Scikit-ribo
-------------------

Scikit-ribo is an open-source software for accurate genome-wide A-site prediction and translation efficiency
inference from Riboseq and RNAseq data.

Source Code: https://github.com/hanfang/scikit-ribo

Introduction
------------

Scikit-ribo has two major modules:

- **Ribosome A-site location prediction** using random forest with recursive feature selection

- **Translation efficiency inference** using a codon-lvel generalized linear model with ridge penalty

A complete analysis with scikit-ribo has two major procedures:

- The data pre-processing step to prepare the ORFs, codons for a genome: ``scikit-ribo-build.py``

- The actual model training and fitting: ``scikit-ribo-run.py``

Detailed workflow
-----------------
.. image:: /images/methods.png
:align: center
:scale: 75%

Inputs
------
- The alignment of Riboseq reads (bam)
- Gene-level quantification of RNA-seq reads (from either Salmon or Kallisto)
- A gene annotation file (gtf)
- A reference genome for the model organism of interest (fasta)


Output
------
- Translation efficiency estimates for the genes
- Translation elongation rate for 61 sense codons
- Ribosome profile plots for each gene
- Diagnostic plots of the models


Cite
----

Fang et al, "Scikit-ribo: Accurate inference and robust modelling of translation dynamics at codon resolution" (Preprint coming up)

Contact
-------

Han Fang

Stony Brook University & Cold Spring Harbor Laboratory

Email: hanfang.cshl@gmail.comRequirement
###########

Environment
-----------

- Python3
- Linux
- Recommend setting up your environment with `Conda <https://conda.io/docs/index.html>`_

Dependencies
------------

- Command-line pacakges:

+----------------+------------+
| Python package | Version >= |
+================+============+
| bedtools | 2.26.0 |
+----------------+------------+

- Python package:

+----------------+------------+
| Python package | Version >= |
+================+============+
| colorama | 0.3.7 |
+----------------+------------+
| glmnet_py |0.1.0b |
+----------------+------------+
| gffutils | 0.8.7.1 |
+----------------+------------+
| matplotlib | 1.5.1 |
+----------------+------------+
| numpy | 1.11.2 |
+----------------+------------+
| pandas | 0.19.2 |
+----------------+------------+
| pybedtools | 0.7.8 |
+----------------+------------+
| pyfiglet | 0.7.5 |
+----------------+------------+
| pysam | 0.9.1.4 |
+----------------+------------+
| scikit_learn | 0.18 |
+----------------+------------+
| scipy | 0.18.1 |
+----------------+------------+
| seaborn | 0.7.0 |
+----------------+------------+
| termcolor | 1.1.0 |
+----------------+------------+

Note: When using pip install scikit-ribo, all the following dependencies will be pulled and installed automatically.

Installation
############

Options
-------
There are three options to install Scikit-ribo.


1. Install Scikit-ribo with pip::

pip install scikit-ribo

2. Install Scikit-ribo with conda/biocodon::

Coming up

3. Compile from source::

git clone https://github.com/hanfang/scikit-ribo.git
cd scikit-ribo
python setup.py install

Test whether the installation is successful
-------------------------------------------
Once the installation is successful, you should expect the below if you type::

scikit-ribo-run.py

.. image:: /images/successful_installation.png
:align: center
:scale: 75%

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_ribo-0.2.4b1.tar.gz (23.8 kB view details)

Uploaded Source

Built Distribution

scikit_ribo-0.2.4b1-py3-none-any.whl (73.2 kB view details)

Uploaded Python 3

File details

Details for the file scikit_ribo-0.2.4b1.tar.gz.

File metadata

File hashes

Hashes for scikit_ribo-0.2.4b1.tar.gz
Algorithm Hash digest
SHA256 529a3542bb3d761e0950b311802b730e071621db639d5e2ac5eda5eaad442845
MD5 92ebae61da481b767989120dd1e4b3ae
BLAKE2b-256 16081a1c7182aa3f6d6dfa6595156beabe6e24229eb63bf9c1051d34874bf636

See more details on using hashes here.

File details

Details for the file scikit_ribo-0.2.4b1-py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_ribo-0.2.4b1-py3-none-any.whl
Algorithm Hash digest
SHA256 2211fdf92e4b065035d2328268e9e5d03944b8ce70a78339d0404a96b55f91a4
MD5 3a5edf06aa99fb9a6a0b84ee3c2b4b48
BLAKE2b-256 ae8c0600c4f9e2f37d58c6e2489afdce9f20cf5be67d855e450c6621ca9b9d20

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page