A scikit framework for joint analysis of Riboseq and RNAseq data
Project description
Getting Started
###############
This document will show you how to install and run Scikit-ribo.
What is Scikit-ribo
-------------------
Scikit-ribo is an open-source software for accurate genome-wide A-site prediction and translation efficiency
inference from Riboseq and RNAseq data.
Source Code: https://github.com/hanfang/scikit-ribo
Introduction
------------
Scikit-ribo has two major modules:
- **Ribosome A-site location prediction** using random forest with recursive feature selection
- **Translation efficiency inference** using a codon-lvel generalized linear model with ridge penalty
A complete analysis with scikit-ribo has two major procedures:
- The data pre-processing step to prepare the ORFs, codons for a genome: ``scikit-ribo-build.py``
- The actual model training and fitting: ``scikit-ribo-run.py``
Detailed workflow
-----------------
.. image:: /images/methods.png
:align: center
:scale: 75%
Inputs
------
- The alignment of Riboseq reads (bam)
- Gene-level quantification of RNA-seq reads (from either Salmon or Kallisto)
- A gene annotation file (gtf)
- A reference genome for the model organism of interest (fasta)
Output
------
- Translation efficiency estimates for the genes
- Translation elongation rate for 61 sense codons
- Ribosome profile plots for each gene
- Diagnostic plots of the models
Cite
----
Fang et al, "Scikit-ribo: Accurate inference and robust modelling of translation dynamics at codon resolution" (Preprint coming up)
Contact
-------
Han Fang
Stony Brook University & Cold Spring Harbor Laboratory
Email: hanfang.cshl@gmail.comRequirement
###########
Environment
-----------
- Python3
- Linux
- Recommend setting up your environment with `Conda <https://conda.io/docs/index.html>`_
Dependencies
------------
- Command-line pacakges:
+----------------+------------+
| Python package | Version >= |
+================+============+
| bedtools | 2.26.0 |
+----------------+------------+
- Python package:
+----------------+------------+
| Python package | Version >= |
+================+============+
| colorama | 0.3.7 |
+----------------+------------+
| glmnet_py |0.1.0b |
+----------------+------------+
| gffutils | 0.8.7.1 |
+----------------+------------+
| matplotlib | 1.5.1 |
+----------------+------------+
| numpy | 1.11.2 |
+----------------+------------+
| pandas | 0.19.2 |
+----------------+------------+
| pybedtools | 0.7.8 |
+----------------+------------+
| pyfiglet | 0.7.5 |
+----------------+------------+
| pysam | 0.9.1.4 |
+----------------+------------+
| scikit_learn | 0.18 |
+----------------+------------+
| scipy | 0.18.1 |
+----------------+------------+
| seaborn | 0.7.0 |
+----------------+------------+
| termcolor | 1.1.0 |
+----------------+------------+
Note: When using pip install scikit-ribo, all the following dependencies will be pulled and installed automatically.
Installation
############
Options
-------
There are three options to install Scikit-ribo.
1. Install Scikit-ribo with pip::
pip install scikit-ribo
2. Install Scikit-ribo with conda/biocodon::
Coming up
3. Compile from source::
git clone https://github.com/hanfang/scikit-ribo.git
cd scikit-ribo
python setup.py install
Test whether the installation is successful
-------------------------------------------
Once the installation is successful, you should expect the below if you type::
scikit-ribo-run.py
.. image:: /images/successful_installation.png
:align: center
:scale: 75%
###############
This document will show you how to install and run Scikit-ribo.
What is Scikit-ribo
-------------------
Scikit-ribo is an open-source software for accurate genome-wide A-site prediction and translation efficiency
inference from Riboseq and RNAseq data.
Source Code: https://github.com/hanfang/scikit-ribo
Introduction
------------
Scikit-ribo has two major modules:
- **Ribosome A-site location prediction** using random forest with recursive feature selection
- **Translation efficiency inference** using a codon-lvel generalized linear model with ridge penalty
A complete analysis with scikit-ribo has two major procedures:
- The data pre-processing step to prepare the ORFs, codons for a genome: ``scikit-ribo-build.py``
- The actual model training and fitting: ``scikit-ribo-run.py``
Detailed workflow
-----------------
.. image:: /images/methods.png
:align: center
:scale: 75%
Inputs
------
- The alignment of Riboseq reads (bam)
- Gene-level quantification of RNA-seq reads (from either Salmon or Kallisto)
- A gene annotation file (gtf)
- A reference genome for the model organism of interest (fasta)
Output
------
- Translation efficiency estimates for the genes
- Translation elongation rate for 61 sense codons
- Ribosome profile plots for each gene
- Diagnostic plots of the models
Cite
----
Fang et al, "Scikit-ribo: Accurate inference and robust modelling of translation dynamics at codon resolution" (Preprint coming up)
Contact
-------
Han Fang
Stony Brook University & Cold Spring Harbor Laboratory
Email: hanfang.cshl@gmail.comRequirement
###########
Environment
-----------
- Python3
- Linux
- Recommend setting up your environment with `Conda <https://conda.io/docs/index.html>`_
Dependencies
------------
- Command-line pacakges:
+----------------+------------+
| Python package | Version >= |
+================+============+
| bedtools | 2.26.0 |
+----------------+------------+
- Python package:
+----------------+------------+
| Python package | Version >= |
+================+============+
| colorama | 0.3.7 |
+----------------+------------+
| glmnet_py |0.1.0b |
+----------------+------------+
| gffutils | 0.8.7.1 |
+----------------+------------+
| matplotlib | 1.5.1 |
+----------------+------------+
| numpy | 1.11.2 |
+----------------+------------+
| pandas | 0.19.2 |
+----------------+------------+
| pybedtools | 0.7.8 |
+----------------+------------+
| pyfiglet | 0.7.5 |
+----------------+------------+
| pysam | 0.9.1.4 |
+----------------+------------+
| scikit_learn | 0.18 |
+----------------+------------+
| scipy | 0.18.1 |
+----------------+------------+
| seaborn | 0.7.0 |
+----------------+------------+
| termcolor | 1.1.0 |
+----------------+------------+
Note: When using pip install scikit-ribo, all the following dependencies will be pulled and installed automatically.
Installation
############
Options
-------
There are three options to install Scikit-ribo.
1. Install Scikit-ribo with pip::
pip install scikit-ribo
2. Install Scikit-ribo with conda/biocodon::
Coming up
3. Compile from source::
git clone https://github.com/hanfang/scikit-ribo.git
cd scikit-ribo
python setup.py install
Test whether the installation is successful
-------------------------------------------
Once the installation is successful, you should expect the below if you type::
scikit-ribo-run.py
.. image:: /images/successful_installation.png
:align: center
:scale: 75%
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scikit_ribo-0.2.4b1.tar.gz
(23.8 kB
view details)
Built Distribution
File details
Details for the file scikit_ribo-0.2.4b1.tar.gz
.
File metadata
- Download URL: scikit_ribo-0.2.4b1.tar.gz
- Upload date:
- Size: 23.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 529a3542bb3d761e0950b311802b730e071621db639d5e2ac5eda5eaad442845 |
|
MD5 | 92ebae61da481b767989120dd1e4b3ae |
|
BLAKE2b-256 | 16081a1c7182aa3f6d6dfa6595156beabe6e24229eb63bf9c1051d34874bf636 |
File details
Details for the file scikit_ribo-0.2.4b1-py3-none-any.whl
.
File metadata
- Download URL: scikit_ribo-0.2.4b1-py3-none-any.whl
- Upload date:
- Size: 73.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2211fdf92e4b065035d2328268e9e5d03944b8ce70a78339d0404a96b55f91a4 |
|
MD5 | 3a5edf06aa99fb9a6a0b84ee3c2b4b48 |
|
BLAKE2b-256 | ae8c0600c4f9e2f37d58c6e2489afdce9f20cf5be67d855e450c6621ca9b9d20 |