Skip to main content
Help us improve Python packaging – donate today!

A scikit framework for joint analysis of Riboseq and RNAseq data

Project Description

Getting Started
###############

This document will show you how to install and run Scikit-ribo.

What is Scikit-ribo
-------------------

Scikit-ribo is an open-source software for accurate genome-wide A-site prediction and translation efficiency
inference from Riboseq and RNAseq data.

Source Code: https://github.com/hanfang/scikit-ribo

Introduction
------------

Scikit-ribo has two major modules:

- **Ribosome A-site location prediction** using random forest with recursive feature selection

- **Translation efficiency inference** using a codon-lvel generalized linear model with ridge penalty

A complete analysis with scikit-ribo has two major procedures:

- The data pre-processing step to prepare the ORFs, codons for a genome: ``scikit-ribo-build.py``

- The actual model training and fitting: ``scikit-ribo-run.py``

Detailed workflow
-----------------
.. image:: /images/methods.png
:align: center
:scale: 75%

Inputs
------
- The alignment of Riboseq reads (bam)
- Gene-level quantification of RNA-seq reads (from either Salmon or Kallisto)
- A gene annotation file (gtf)
- A reference genome for the model organism of interest (fasta)


Output
------
- Translation efficiency estimates for the genes
- Translation elongation rate for 61 sense codons
- Ribosome profile plots for each gene
- Diagnostic plots of the models


Cite
----

Fang et al, "Scikit-ribo: Accurate inference and robust modelling of translation dynamics at codon resolution" (Preprint coming up)

Contact
-------

Han Fang

Stony Brook University & Cold Spring Harbor Laboratory

Email: hanfang.cshl@gmail.comRequirement
###########

Environment
-----------

- Python3
- Linux
- Recommend setting up your environment with `Conda <https://conda.io/docs/index.html>`_

Dependencies
------------

- Command-line pacakges:

+----------------+------------+
| Python package | Version >= |
+================+============+
| bedtools | 2.26.0 |
+----------------+------------+

- Python package:

+----------------+------------+
| Python package | Version >= |
+================+============+
| colorama | 0.3.7 |
+----------------+------------+
| glmnet_py |0.1.0b |
+----------------+------------+
| gffutils | 0.8.7.1 |
+----------------+------------+
| matplotlib | 1.5.1 |
+----------------+------------+
| numpy | 1.11.2 |
+----------------+------------+
| pandas | 0.19.2 |
+----------------+------------+
| pybedtools | 0.7.8 |
+----------------+------------+
| pyfiglet | 0.7.5 |
+----------------+------------+
| pysam | 0.9.1.4 |
+----------------+------------+
| scikit_learn | 0.18 |
+----------------+------------+
| scipy | 0.18.1 |
+----------------+------------+
| seaborn | 0.7.0 |
+----------------+------------+
| termcolor | 1.1.0 |
+----------------+------------+

Note: When using pip install scikit-ribo, all the following dependencies will be pulled and installed automatically.

Installation
############

Options
-------
There are three options to install Scikit-ribo.


1. Install Scikit-ribo with pip::

pip install scikit-ribo

2. Install Scikit-ribo with conda/biocodon::

Coming up

3. Compile from source::

git clone https://github.com/hanfang/scikit-ribo.git
cd scikit-ribo
python setup.py install

Test whether the installation is successful
-------------------------------------------
Once the installation is successful, you should expect the below if you type::

scikit-ribo-run.py

.. image:: /images/successful_installation.png
:align: center
:scale: 75%

Release history Release notifications

This version
History Node

0.2.4b1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
scikit_ribo-0.2.4b1-py3-none-any.whl (73.2 kB) Copy SHA256 hash SHA256 Wheel py3 Jun 27, 2017
scikit_ribo-0.2.4b1.tar.gz (23.8 kB) Copy SHA256 hash SHA256 Source None Jun 27, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page