Skip to main content

scikit-surgeryarucotracker is a simple tracking interface using ARuCo markers

Project description

Logo

OpenSSF Best Practices GitHub CI test status Test coverage Documentation Status https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg The SciKit-Surgery paper Software DOI Follow scikit_surgery on twitter

Author: Stephen Thompson

scikit-surgeryarucotracker provides a simple Python interface between OpenCV’s ARuCo marker tracking libraries and other Python packages designed around scikit-surgerytrackers. It allows you to treat an object tracked using ARuCo markers in the same way as an object tracked using other tracking hardware (e.g. aruco - scikit-surgerynditracker).

scikit-surgeryarucotracker is part of the SciKit-Surgery software project, developed at the Wellcome EPSRC Centre for Interventional and Surgical Sciences, part of University College London (UCL).

scikit-surgeryarucotracker is tested with Python 3.6 and may support other Python versions.

Installing

pip install scikit-surgeryarucotracker

Using

Configuration is done using Python libraries. Tracking data is returned in NumPy arrays.

from sksurgeryarucotracker.arucotracker import ArUcoTracker
config = {
    "video source" : 0
        }
tracker = ArUcoTracker(config)

tracker.start_tracking()
print(tracker.get_frame())
tracker.stop_tracking()
tracker.close()

Developing

Cloning

You can clone the repository using the following command:

git clone https://github.com/SciKit-Surgery/scikit-surgeryarucotracker

Running the tests

You can run the unit tests by installing and running tox:

pip install tox
tox

Contributing

Please see the contributing guidelines.

Acknowledgements

Supported by Wellcome and EPSRC.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-surgeryarucotracker-1.0.3.tar.gz (29.2 kB view details)

Uploaded Source

File details

Details for the file scikit-surgeryarucotracker-1.0.3.tar.gz.

File metadata

File hashes

Hashes for scikit-surgeryarucotracker-1.0.3.tar.gz
Algorithm Hash digest
SHA256 3998c4fc24120da53db9be87b928d38c486a956a45fe7a8b03f1465b6ec02f97
MD5 f571cff285f107fe47f8887f293bfd9b
BLAKE2b-256 e5a197450d6db5109fde3d94958c081786946a1568a8d5aeeb61d930074b3053

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page