Skip to main content

Augmented Reality for Davinci Surgical Robot

Project description

Logo GitLab-CI test status Test coverage Documentation Status

Augmented reality for image-guided laproscopic surgery.

scikit-surgerydavinci is part of the SNAPPY software project, developed at the Wellcome EPSRC Centre for Interventional and Surgical Sciences, part of University College London (UCL).

https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/scikit-surgeryardavinci/raw/master/doc/ardavin_demo.gif

Author: Thomas Dowrick

scikit-surgerydavinci supports Python 3.6.

Installing

You can install using pip:

pip install scikit-surgerydavinci

Example Usage

Single video feed:

python sksurgerydavinci -s 0 -m MODEL_DIR

-m specifies the location of a directory containing vtl/stl/vtp/ply models.

Stereo video feed:

python sksurgerydavinci -s 0 1 -m MODEL_DIR

Mock stereo feed using only one input:

python sksurgerydavinci -s 0 -1 -m MODEL_DIR

If 3 or more screens are available, each video feed will run full screen on a separate display. Video feeds can be assigned to specific displays using the -o arugment:

python sksurgerydavinci -s 0 1 -o 2 3 1

More details on command line arguments can be viewed using:

python sksurgerydavinci -h

Contributing

Please see the contributing guidelines.

Acknowledgements

Supported by Wellcome and EPSRC.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

scikit_surgerydavinci-0.3.2-py2.py3-none-any.whl (19.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit_surgerydavinci-0.3.2-py2.py3-none-any.whl.

File metadata

  • Download URL: scikit_surgerydavinci-0.3.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 19.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/44.1.1 requests-toolbelt/0.9.1 tqdm/4.50.1 CPython/2.7.17

File hashes

Hashes for scikit_surgerydavinci-0.3.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 08017d7413715703ce483b0f6fdff02106419f1599dc20a58f1c0323d558bafa
MD5 5de7a3b020745e7ce383a4827d066826
BLAKE2b-256 cedeb0bb6daa724aea6e397ffa30d6f07acccb50f94e4e9d961940da8a78f043

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page