Skip to main content

Survival analysis built on top of scikit-learn

Project description

License readthedocs.org Digital Object Identifier (DOI)

Linux Build Status macOS Build Status Windows Build Status on AppVeyor codecov Codacy Badge

scikit-survival

scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizing the power of scikit-learn, e.g., for pre-processing or doing cross-validation.

About Survival Analysis

The objective in survival analysis (also referred to as time-to-event or reliability analysis) is to establish a connection between covariates and the time of an event. What makes survival analysis differ from traditional machine learning is the fact that parts of the training data can only be partially observed – they are censored.

For instance, in a clinical study, patients are often monitored for a particular time period, and events occurring in this particular period are recorded. If a patient experiences an event, the exact time of the event can be recorded – the patient’s record is uncensored. In contrast, right censored records refer to patients that remained event-free during the study period and it is unknown whether an event has or has not occurred after the study ended. Consequently, survival analysis demands for models that take this unique characteristic of such a dataset into account.

Requirements

  • Python 3.7 or later

  • ecos

  • joblib

  • numexpr

  • numpy 1.16 or later

  • osqp

  • pandas 0.25 or later

  • scikit-learn 1.0

  • scipy 1.0 or later

  • C/C++ compiler

Installation

The easiest way to install scikit-survival is to use Anaconda by running:

conda install -c sebp scikit-survival

Alternatively, you can install scikit-survival from source following this guide.

Examples

The user guide provides in-depth information on the key concepts of scikit-survival, an overview of available survival models, and hands-on examples in the form of Jupyter notebooks.

Help and Support

Documentation

Bug reports

  • If you encountered a problem, please submit a bug report.

Questions

  • If you have a question on how to use scikit-survival, please use GitHub Discussions.

  • For general theoretical or methodological questions on survival analysis, please use Cross Validated.

Contributing

New contributors are always welcome. Please have a look at the contributing guidelines on how to get started and to make sure your code complies with our guidelines.

References

Please cite the following paper if you are using scikit-survival.

S. Pölsterl, “scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn,” Journal of Machine Learning Research, vol. 21, no. 212, pp. 1–6, 2020.

@article{sksurv,
  author  = {Sebastian P{\"o}lsterl},
  title   = {scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {212},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/20-729.html}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-survival-0.17.2.tar.gz (2.5 MB view details)

Uploaded Source

Built Distributions

scikit_survival-0.17.2-cp310-cp310-win_amd64.whl (711.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_survival-0.17.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_survival-0.17.2-cp310-cp310-macosx_10_13_x86_64.whl (757.6 kB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

scikit_survival-0.17.2-cp39-cp39-win_amd64.whl (709.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_survival-0.17.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_survival-0.17.2-cp39-cp39-macosx_10_13_x86_64.whl (754.9 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

scikit_survival-0.17.2-cp38-cp38-win_amd64.whl (710.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

scikit_survival-0.17.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scikit_survival-0.17.2-cp38-cp38-macosx_10_13_x86_64.whl (747.4 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

scikit_survival-0.17.2-cp37-cp37m-win_amd64.whl (706.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

scikit_survival-0.17.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

scikit_survival-0.17.2-cp37-cp37m-macosx_10_13_x86_64.whl (750.2 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file scikit-survival-0.17.2.tar.gz.

File metadata

  • Download URL: scikit-survival-0.17.2.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.0

File hashes

Hashes for scikit-survival-0.17.2.tar.gz
Algorithm Hash digest
SHA256 78fe7c4dc171346d09df66209da1a15a4923002d3c177a283cbc0cbf86540355
MD5 0520a14eee45cd4658d1f311b0e971fe
BLAKE2b-256 3c781cad1ea16e60d9dd02c4ffdf91309b23dc61d573c105ca945a806e04426e

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cab17afabeae3f73bf16eed62f86ec4916be2329952ba08b614257f56fe04fcb
MD5 e4906638e16cc81e9c6a953097610d51
BLAKE2b-256 f6fa4cd51be31ec4acd0bf85f2e984f02f8131a7ada61b874ca314ee359eeb24

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c35ab337a0efbcc8bde8b4f7b877d8a853dc75585d496985f8dffc92aeb9788
MD5 1b220359998af795ee69d7716f50a5d5
BLAKE2b-256 8c4ace7597fecad7e63d9605bc4428f2c40eb57b0a190dbab9074eecfc6b2a1c

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 218df5755167655efab82e396494d89e024d93e52657fa642561d817f300a925
MD5 00736431a2f282fbb9d98d40c2b16114
BLAKE2b-256 a5405061a64d0c8a04d886519cddb25301ad043a1252b637cd752e181416c5c1

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6e99f2bd5d7e341464f64bc820ce99a109c2782de69c506668cc22f086557e71
MD5 eb9ef296c9c3dd5e21de08f2b1eafb4e
BLAKE2b-256 544c3dd16c18d1722fc70eb577653a9bbf7106b2f6f20f53632dfade8efeda30

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65fe1c0c6b6fc632bd38f35008eb158c2c1913852ab4b633c656ff3c1ba5dd97
MD5 8de8a70723c0c81e56f883a26f2cb855
BLAKE2b-256 db69dcc80692055dffc9e1bd2467582b2980006f05e6d1ddbeb2d54e204c8490

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0670b0e297635721714337b6a61922dfa377530696792ec412678df8161f3c79
MD5 0568bc989515a58ffbf4cddadfde3808
BLAKE2b-256 f73e040a0cae7a4b6192cf1cea8ddff45cc67cc87447c978133931d7a7cde555

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 485ecb1bba39c8636c22948da4196969928acdbcc2f00884d0595591e757cfba
MD5 b0e6e575f0c0a1362b4ee40446dc8b83
BLAKE2b-256 97722ad2ed3b1e13cf477fa00b9d784d6a1c260dd5fb03abade71bd060998a9c

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 950bfb910d1ae85810277dbe7242f7caf0f14ee6ca644b33737d864d0dbfb0c3
MD5 05518dc67fe8e9b32ac52fbaba198722
BLAKE2b-256 fb60243c00a697ed3305aca916e715c93ab40b011d96436f247094d609011046

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5cff5e969197b48f6d43d90700e8087a4e0e83e6ad0f274a014ebb1596076ae0
MD5 a2d0d3ab4a199e3a7da2a7b5d52cc195
BLAKE2b-256 f8c208c92ef40b97d9d70ce8f829b1c59089db76b9d9dd6e367b3423dc1f3e4b

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 84926970a12d49c6e3fadceb8dd72536e7d68e0b64b4e7c9e4527b4f7aba5b0b
MD5 b7cbddb870159cd3be318c81edb43b1b
BLAKE2b-256 8b38b4be891667c27d7eeec51ceb56effe05fd3ad492786a855e03e62f61a7d3

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6510177c9afd4bd6832ff96ba7dae97106158e70533686b9e5396774af92261
MD5 565c1496c851cbda20de9b89eb69e8a0
BLAKE2b-256 c16d2d89d7bc9ee7bb6b81ee44e5e6ce02401d3b3a1d4ef00c8523afeceb502d

See more details on using hashes here.

File details

Details for the file scikit_survival-0.17.2-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.17.2-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e1cdef35d23a4c52d26cb108dccfc9dd7b425793cacc9ce4b9bcfba43573edd8
MD5 b87926902709bb48f0d71434815c8644
BLAKE2b-256 3a97248db09790d83358efe35e4232113bab1bfee996c29f483af52ceacd9539

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page