Skip to main content

Survival analysis built on top of scikit-learn

Project description

License readthedocs.org Digital Object Identifier (DOI)

GitHub Actions Tests Status Windows Build Status on AppVeyor codecov Codacy Badge

scikit-survival

scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizing the power of scikit-learn, e.g., for pre-processing or doing cross-validation.

About Survival Analysis

The objective in survival analysis (also referred to as time-to-event or reliability analysis) is to establish a connection between covariates and the time of an event. What makes survival analysis differ from traditional machine learning is the fact that parts of the training data can only be partially observed – they are censored.

For instance, in a clinical study, patients are often monitored for a particular time period, and events occurring in this particular period are recorded. If a patient experiences an event, the exact time of the event can be recorded – the patient’s record is uncensored. In contrast, right censored records refer to patients that remained event-free during the study period and it is unknown whether an event has or has not occurred after the study ended. Consequently, survival analysis demands for models that take this unique characteristic of such a dataset into account.

Requirements

  • Python 3.9 or later

  • ecos

  • joblib

  • numexpr

  • numpy

  • osqp

  • pandas 1.0.5 or later

  • scikit-learn 1.4 or 1.5

  • scipy

  • C/C++ compiler

Installation

The easiest way to install scikit-survival is to use Anaconda by running:

conda install -c conda-forge scikit-survival

Alternatively, you can install scikit-survival from source following this guide.

Examples

The user guide provides in-depth information on the key concepts of scikit-survival, an overview of available survival models, and hands-on examples in the form of Jupyter notebooks.

Help and Support

Documentation

Bug reports

  • If you encountered a problem, please submit a bug report.

Questions

  • If you have a question on how to use scikit-survival, please use GitHub Discussions.

  • For general theoretical or methodological questions on survival analysis, please use Cross Validated.

Contributing

New contributors are always welcome. Please have a look at the contributing guidelines on how to get started and to make sure your code complies with our guidelines.

References

Please cite the following paper if you are using scikit-survival.

S. Pölsterl, “scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn,” Journal of Machine Learning Research, vol. 21, no. 212, pp. 1–6, 2020.

@article{sksurv,
  author  = {Sebastian P{\"o}lsterl},
  title   = {scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {212},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/20-729.html}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_survival-0.23.0.tar.gz (2.7 MB view details)

Uploaded Source

Built Distributions

scikit_survival-0.23.0-cp312-cp312-win_amd64.whl (825.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_survival-0.23.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.0-cp312-cp312-macosx_11_0_arm64.whl (840.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_survival-0.23.0-cp312-cp312-macosx_10_13_x86_64.whl (869.2 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

scikit_survival-0.23.0-cp311-cp311-win_amd64.whl (820.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_survival-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.0-cp311-cp311-macosx_11_0_arm64.whl (835.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_survival-0.23.0-cp311-cp311-macosx_10_13_x86_64.whl (861.7 kB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

scikit_survival-0.23.0-cp310-cp310-win_amd64.whl (820.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_survival-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.0-cp310-cp310-macosx_11_0_arm64.whl (835.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_survival-0.23.0-cp310-cp310-macosx_10_13_x86_64.whl (861.9 kB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

scikit_survival-0.23.0-cp39-cp39-win_amd64.whl (823.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_survival-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.0-cp39-cp39-macosx_11_0_arm64.whl (839.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

scikit_survival-0.23.0-cp39-cp39-macosx_10_13_x86_64.whl (865.7 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file scikit_survival-0.23.0.tar.gz.

File metadata

  • Download URL: scikit_survival-0.23.0.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for scikit_survival-0.23.0.tar.gz
Algorithm Hash digest
SHA256 24523748338aef8bd076850e4ad6257387b4547a6cf7b2a35776b535048de84d
MD5 9d89b66962d18068fdc8c2196f6cf731
BLAKE2b-256 93663b707e46dc81dd54479439321f7206e618a62d92daa9108f853dac3dc054

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9f2677aff1064d8fd0a054fbd1128e3b76e7e1f58b6d92ed5fdd63f67deb3e9d
MD5 aa7ed134e69fc228c7fa102aad5544e7
BLAKE2b-256 b4bd41d1c3efb50e44e820413c77bfbf80b68c940771ce8acaf49c1a54289c19

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb45590824b64162a6b3fdf04537d3cb54bb1c84bf825909f0437433656e4c37
MD5 4576bbbd05bd1e5f7471a3eeb9816984
BLAKE2b-256 0485f71f56f851e1856cee6f28daf700862380286f7962fed29c7acbd5238204

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d5fe7447d38b9c0e12eeffec561504f988cdef7ba56e01c7aa1c4b123abe727
MD5 39ef34756ef279b698addbf600d2d571
BLAKE2b-256 edd1a185f3b924f39b1d11b7281c54e92471c4b612736f861148ea2e5cee75cc

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9f5de22f6abec42a379184ebd423f1ed7bb396aebe9cca6fecfaf95585f9ad39
MD5 663b911212ab02293c13b372011df486
BLAKE2b-256 1b4da6ee36c3c3d6c2588f1c7a7fbf8320f39263193c41c919d8b1e6005bf46c

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 df34e2a4979c6c76bbc5f9271c1c21af9faa4ff320ed1e5e81de0e93f4920654
MD5 0af1c00a275ebc7114298d8e98b332ba
BLAKE2b-256 8532952694a1628bee0841a70fb01ed9ef30a6501edadbb3cfd95d6d40b74a41

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2150baeb2dcdb3b46b1a3719a5ea428963dc9fddbb3933fa26dafa916ccb9cdc
MD5 f8f3a67b35314553733d34ea44c4594b
BLAKE2b-256 d963a0ec6abf68fe215001ff07450c96e6f7393b2ee4cd3fb382b0bc8ff9f88d

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af6fdbbf9ab4eb56ff0c50eace1a1bfa7bc8680dc567dbbd06b3f4ba2d31a236
MD5 f487c8d540b374d82e9a4c84f5aa1db8
BLAKE2b-256 f3add7b779d43a1ad78e1cecee3a0f91d12eab0ddfc1b074314c994796d5d53f

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aca515a34e1076bb2553d82bfd73c91ae1f700431e4ca2980366bbb96383f3c7
MD5 02359b02e6bd1831e0b7032e8cc18f41
BLAKE2b-256 082dee14bdba3d9f2b6daff5120bfa159ca2d1e37c98f64cc2422bd6cf2e10ed

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 81a44406823e20747007e6568cb9f03138ecbea03d3fe3b0e565bf45706c5e2a
MD5 f3d738955c76f96048fac178aecff612
BLAKE2b-256 d72489a7406c44b858e3a55594f32d91864e1febc5546e6c8a537c7618372920

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a788edba57a1eec3f053b63ba702177305f589c469f25261578f4f759aa7182d
MD5 51620ac623fc9f6b032241e47467cc43
BLAKE2b-256 74a6a51b1a788eceea5567afb52c2daa85a90794faaadbe068042fecb0d2f4fa

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09632a5f1f4840b0595bcbff2a3db19aed4d91363f254108efb0d54e4be0144a
MD5 2adbcab35adb4506a31f45e2c5ce4625
BLAKE2b-256 b0ec6677a50967811b7c353b70a23d26c610f507b6249e22df25abd75b4fb211

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3f86681c27ba7661ef141f488a7cd8489e150627b5d4ed886c548de2acd473b3
MD5 b3e7457a41821f02f05194173dab8fcd
BLAKE2b-256 cafbb347f6db31ab823d62d29fbd050e0b660b8f6a573b81db12f6dbb138dbaf

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cf209b302eb03a6e33c8ea85fdc82c25784ef9f7bed414cdb14fdf2e19258e54
MD5 3d7fa881233ce252128621fa332d4ba8
BLAKE2b-256 7c1ec627e9a0e7d75ba65c3d6bc9c54b2cc969dfe0ba1de366f87cc22c3f672d

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ef07d56ad408f9122c1ccdacdb487a8a2dfed5cd2d863d86cc326bb4153fc0b
MD5 9c8f00ac01b3945dabe302f1891534d2
BLAKE2b-256 b87c2129cdb0776f68d225cf587da1e55c2b7bf318027013b24f8ecee1ef5fa9

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d229abe19fafd1ba48c9ea02ee9939d407456ac5dd562b8a9c4a2b37bc604eb0
MD5 4c15968e31d8ec0916e7862d3591beb2
BLAKE2b-256 ec20b0e0133bb5a4208f09883f55704dbc9c839b99132f0137a35f892f6890c5

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6b6ddd4cc10af520c9ea820b19c94b6fbece26c6c338e5bfd731fa7bf4b754b7
MD5 5adf9bc39e0812b6533483b40c1fed73
BLAKE2b-256 6cd4e6fdfcda19c09dc1db95bf28b8b32f1c5677cc8649bd57be3e5f08265e57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page