Skip to main content

Very Basic package make some usefull log transformation for scikit-learn

Project description

image License: GPL v3 Python Repo Size PEP8 Poetry Coverage Tests Statics Doc Pypi GitHub commit activity

Scikit-transformers : Scikit-learn + Custom transformers

About

Basic package to enable usefull transformers in scikit-learn pipelines.

First transformer implemented is a LogTransformer, which is a simple wrapper around the numpy log function.

Installation

Using regular pip and venv tools :

python3 -m venv .venv
source .venv/bin/activate
pip install scikit-transformers

Usage

For a very basic usage :

import pandas as pd

from sktransf import LogTransformer

df = pd.DataFrame(
    { "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
      "b": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    }
)

logger = LogTransformer()
logger.fit_transform(df)
df_transf = logger.transform(df)

Using common transformers :

import pandas as pd

from sktransf import LogTransformer, DropUniqueColumnTransformer, BoolColumnTransformer

df = pd.DataFrame(
    { "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
      "b": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    }
)

df_bool = BoolColumnTransformer().fit_transform(df)
df_unique = DropUniqueColumnTransformer().fit_transform(df)
df_logged = LogTransformer().fit_transform(df)

Using a pipeline :

import pandas as pd
from sklearn.pipeline import Pipeline

from sktransf import LogTransformer, DropUniqueColumnTransformer, BoolColumnTransformer

pipe = Pipeline([
    ('bool', BoolColumnTransformer()),
    ('unique', DropUniqueColumnTransformer()),
    ('log', LogTransformer())
])

df = pd.DataFrame(
    { "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
      "b": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    }
)

df_transf = pipe.fit_transform(df)

Using a pipeline with a scikit-learn model :

import pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression

from sktransf import LogTransformer, DropUniqueColumnTransformer, BoolColumnTransformer

pipe = Pipeline([
    ('bool', BoolColumnTransformer()),
    ('unique', DropUniqueColumnTransformer()),
    ('log', LogTransformer()),
    ('model', LinearRegression())
])

X = pd.DataFrame(
    { "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
      "b": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    }
)

y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

pipe.fit(X, y)

y_pred = pipe.predict(X)

Documentation

For more specific information, please refer to the notebooks:

A complete documentation is be available on the github page.

Changelog, Releases and Roadmap

Please refer to the changelog page for more information.

Contributing

Pull requests are welcome.

For major changes, please open an issue first to discuss what you would like to change.

For more information, please refer to the contributing page.

License

GPLv3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_transformers-0.2.1.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

scikit_transformers-0.2.1-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file scikit_transformers-0.2.1.tar.gz.

File metadata

  • Download URL: scikit_transformers-0.2.1.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.0 CPython/3.11.3 Linux/6.5.0-15-generic

File hashes

Hashes for scikit_transformers-0.2.1.tar.gz
Algorithm Hash digest
SHA256 3a7925fa06a636e4b3d42b78054ddb448a34ac674464773239a91af038ff1d3a
MD5 dd5c0d742fdbd922df6a65fd1023192a
BLAKE2b-256 b3fc4cdedb1bb00888fdf80a51fa3b62e61b9237a326fc095c7c4360ad398489

See more details on using hashes here.

File details

Details for the file scikit_transformers-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: scikit_transformers-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 18.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.0 CPython/3.11.3 Linux/6.5.0-15-generic

File hashes

Hashes for scikit_transformers-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2cfdd2465edf024262f9a7c93350a75a39985fdc157c38895536b76cca2ac578
MD5 3a7444c1d03349b98534ee5bb076d7e7
BLAKE2b-256 32aca91be379f9692aa5fe31de9190c763b6a3062b6079655912357b615b0989

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page