Skip to main content

Python interface to UMFPACK sparse direct solver.

Project description

scikit-umfpack

scikit-umfpack provides wrapper of UMFPACK sparse direct solver to SciPy.

Usage:

>>> from scikits.umfpack import spsolve, splu
>>> lu = splu(A)
>>> x = spsolve(A, b)

Installing scikits.umfpack also enables using UMFPACK solver via some of the scipy.sparse.linalg functions, for SciPy >= 0.14.0. Note you will need to have installed UMFPACK before hand. UMFPACK is parse of SuiteSparse.

Dependencies

scikit-umfpack depends on NumPy, SciPy, SuiteSparse, and swig is a build-time dependency.

Building SuiteSparse

SuiteSparse may be available from your package manager or as a prebuilt shared library. If that is the case use that if possible. Installation on Ubuntu 14.04 can be achieved with

sudo apt-get install libsuitesparse-dev

Otherwise, you will need to build from source. Unfortunately, SuiteSparse’s makefiles do not support building a shared library out of the box. You may find Stefan Fürtinger instructions helpful.

Furthmore, building METIS-4.0, an optional but important compile time dependency of SuiteSparse, has problems on newer GCCs. This patch and instructions from Nadir Soualem are helpful for getting a working METIS build.

Otherwise, I commend you to the documentation.

Install

This package uses distutils, which is the default way of installing python modules. In the directory scikit-umfpack (the same as the file you are reading now) do:

python setup.py install

or for a local installation:

python setup.py install --root=<DIRECTORY>

Development

Code

You can check the latest sources with the command:

git clone https://github.com/scikit-umfpack/scikit-umfpack.git

or if you have write privileges:

git clone git@github.com:scikit-umfpack/scikit-umfpack.git

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

nosetests -v scikits.umfpack

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-umfpack-0.2.1.tar.gz (18.8 kB view details)

Uploaded Source

Built Distributions

scikit_umfpack-0.2.1-cp35-cp35m-macosx_10_6_intel.whl (916.7 kB view details)

Uploaded CPython 3.5mmacOS 10.6+ Intel (x86-64, i386)

scikit_umfpack-0.2.1-cp34-cp34m-macosx_10_6_intel.whl (916.7 kB view details)

Uploaded CPython 3.4mmacOS 10.6+ Intel (x86-64, i386)

scikit_umfpack-0.2.1-cp27-none-macosx_10_6_intel.whl (918.6 kB view details)

Uploaded CPython 2.7macOS 10.6+ Intel (x86-64, i386)

File details

Details for the file scikit-umfpack-0.2.1.tar.gz.

File metadata

File hashes

Hashes for scikit-umfpack-0.2.1.tar.gz
Algorithm Hash digest
SHA256 9ebfb4ac4cd1ec545a9211160c65129a77b6e2fab02d8cfa30b10278f5773fd1
MD5 582d6a1b78576d1b6dc8c5f95635c24e
BLAKE2b-256 cb5c1da1181dfda148b8a7f79319a7bac24c71d972a48dd7f197ded7eb944eec

See more details on using hashes here.

File details

Details for the file scikit_umfpack-0.2.1-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scikit_umfpack-0.2.1-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 340a90215833fb8293098d997155bf9085d48acc6f597d8869db86a9a7c8d29d
MD5 24144ebabb633aa0297b93684d583a0f
BLAKE2b-256 3141e5f5b8d2440b8efdb738055bd80eb25e683a8f48cb9b2f5b1c88fde329df

See more details on using hashes here.

File details

Details for the file scikit_umfpack-0.2.1-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scikit_umfpack-0.2.1-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 46a6bb4096f7de50f52c62c7b0ffc7cb143c338806657cc7a38c26cd23bf3ae5
MD5 85a8aaa625a5aceb40ab3e9da42436a3
BLAKE2b-256 301f2cdd58dcec3347088f5c7c78cd53e0ce658705bf400007a4bb6317c3cf6d

See more details on using hashes here.

File details

Details for the file scikit_umfpack-0.2.1-cp27-none-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scikit_umfpack-0.2.1-cp27-none-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 68635ab4f562bc75780852273fa0e008bf805f9ee1fc7202535e78e1ac429a2e
MD5 f4b11fd277bb2408e76c063ffda2cfcc
BLAKE2b-256 25b3416c5331ae806ecb7fcdcee3dbaf9f890addc6ab8d63aa32aa14476c1fcb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page