Skip to main content

Automatically serve ML model as a REST API

Project description

scikit-rest

logo Automatically deploy your ML model as a REST API

Often times, deploying your favorite Scikit-learn / XGBoost / Pytorch / Tensorflow model as a REST API might take a lot of time. There are a lot of boilerplate codes to be written. scikit-rest is a package designed to alleviate most of the pain points within this process.

Prerequisites

This package officially supports Python 3

Installing

pip install scikit_rest

Usage

The main function offered in this package is serve, with the following syntax:

    serve(
        col_list: List[str],
        col_types: Dict[str, Union[List, type]],
        transform_fn: Callable,
        predict_fn: Union[Callable, sklearn.base.BaseEstimator],
        port: int,
        is_nullable: bool ,
        name: str,
    )

col_list

List of Column names, where the order of the values will dictate the order within the pandas DataFrame

col_list = ['class', 'sex', 'age', 'embarked', 'date', 'is_englishman']

col_types

Dictionary of Column Names and the type of the variable, used for input Validation. If the values of the dictionary is instead a list, We assume that any input for the variable can only be any of the ones listed within the list

col_types = {
    'class' : int,
    'sex' : str,
    'age' : float,
    'embarked': ['C', 'S', 'Q'],
    'date': datetime.datetime,
    'is_englishman': bool
}

transform_fn

Function which convert the input dataframe into test dataframe, we can call model.predict upon to get the final result

def transform_fn(input_df):
    df = input_df.copy()
    df['sex'] = df['sex'].apply(lambda x : transform_sex(x))
    df['embarked'] = df['embarked'].apply(lambda x : transform_embarked(x))
    df['date'] = df['date'].dt.year
    df = df.fillna(0.)
    return df

predict_fn

Function which convert the test dataframe into result. If a ML model instance is passed in, we will instead try to call model.predict_proba / model.predict to get the result

def predict_fn(input_df):
    df = input_df.copy()
    return model.predict(df).item()

port

Port Number where the REST API should be served upon

is_nullable

Whether input API can be nullable

name

Name of the program

Example

Example of Usage can be found at example folder

Contributing

Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.

Authors

[Aditya Kelvianto Sidharta][https://adityasidharta.com]

License

This project is licensed under the MIT License - see the LICENSE file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_rest-0.1.1.tar.gz (28.8 kB view details)

Uploaded Source

Built Distribution

scikit_rest-0.1.1-py2.py3-none-any.whl (14.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit_rest-0.1.1.tar.gz.

File metadata

  • Download URL: scikit_rest-0.1.1.tar.gz
  • Upload date:
  • Size: 28.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.18.4

File hashes

Hashes for scikit_rest-0.1.1.tar.gz
Algorithm Hash digest
SHA256 0855814cbcf827cdc66f3ff9b3905d51fba2c04cfa41ff04b9f2efa51b5e0840
MD5 6ab3f94504a459272930d96ff864a530
BLAKE2b-256 a62206a60b2ab588dadeebaf198dce565c31ee7cfe078e2d75d354fad47e61ef

See more details on using hashes here.

File details

Details for the file scikit_rest-0.1.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_rest-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e61eec09fcb6e124d0890ffaa3173ab578979feac37688b1ee4201b15e258e1a
MD5 b089fca51bb903220e42a1549910ecb9
BLAKE2b-256 c45ff81d2750a6c969da12d2a7b6f54f2fd89bb2c497717473333c3c61b187e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page