Automatically serve ML model as a REST API
Project description
scikit-rest
Automatically deploy your ML model as a REST API
Often times, deploying your favorite Scikit-learn / XGBoost / Pytorch / Tensorflow model as a REST API might take a lot of time. There are a lot of boilerplate codes to be written. scikit-rest
is a package designed to alleviate most of the pain points within this process.
Prerequisites
This package officially supports Python 3
Installing
pip install scikit_rest
Usage
The main function offered in this package is serve
, with the following syntax:
serve(
col_list: List[str],
col_types: Dict[str, Union[List, type]],
transform_fn: Callable,
predict_fn: Union[Callable, sklearn.base.BaseEstimator],
port: int,
is_nullable: bool ,
name: str,
)
col_list
List of Column names, where the order of the values will dictate the order within the pandas DataFrame
col_list = ['class', 'sex', 'age', 'embarked', 'date', 'is_englishman']
col_types
Dictionary of Column Names and the type of the variable, used for input Validation. If the values of the dictionary is instead a list, We assume that any input for the variable can only be any of the ones listed within the list
col_types = {
'class' : int,
'sex' : str,
'age' : float,
'embarked': ['C', 'S', 'Q'],
'date': datetime.datetime,
'is_englishman': bool
}
transform_fn
Function which convert the input dataframe into test dataframe, we can call model.predict upon to get the final result
def transform_fn(input_df):
df = input_df.copy()
df['sex'] = df['sex'].apply(lambda x : transform_sex(x))
df['embarked'] = df['embarked'].apply(lambda x : transform_embarked(x))
df['date'] = df['date'].dt.year
df = df.fillna(0.)
return df
predict_fn
Function which convert the test dataframe into result. If a ML model instance is passed in, we will instead try to call model.predict_proba / model.predict to get the result
def predict_fn(input_df):
df = input_df.copy()
return model.predict(df).item()
port
Port Number where the REST API should be served upon
is_nullable
Whether input API can be nullable
name
Name of the program
Example
Example of Usage can be found at example folder
Contributing
Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.
Authors
[Aditya Kelvianto Sidharta][https://adityasidharta.com]
License
This project is licensed under the MIT License - see the LICENSE file for details
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file scikit_rest-0.1.1.tar.gz
.
File metadata
- Download URL: scikit_rest-0.1.1.tar.gz
- Upload date:
- Size: 28.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.18.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0855814cbcf827cdc66f3ff9b3905d51fba2c04cfa41ff04b9f2efa51b5e0840 |
|
MD5 | 6ab3f94504a459272930d96ff864a530 |
|
BLAKE2b-256 | a62206a60b2ab588dadeebaf198dce565c31ee7cfe078e2d75d354fad47e61ef |
File details
Details for the file scikit_rest-0.1.1-py2.py3-none-any.whl
.
File metadata
- Download URL: scikit_rest-0.1.1-py2.py3-none-any.whl
- Upload date:
- Size: 14.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.18.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e61eec09fcb6e124d0890ffaa3173ab578979feac37688b1ee4201b15e258e1a |
|
MD5 | b089fca51bb903220e42a1549910ecb9 |
|
BLAKE2b-256 | c45ff81d2750a6c969da12d2a7b6f54f2fd89bb2c497717473333c3c61b187e2 |