This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
The ANN module provides a numpy-compatible python wrapper around the
Approximate Nearest Neighbor library (http://www.cs.umd.edu/~mount/ANN/)

* Installation *
Download and build the Approximate Nearest Neighbor library. Modify the ANN section of
site.cfg so that ANN_ROOT is the path to the root of the Approximate Nearest Neighbor
library include/lib tree.
If /usr/local/include contains the ANN/ include directory and /usr/local/lib contains
libANN.a, then
ANN_ROOT = /usr/local

Run ::

python setup.py build_ext --inplace build test
sudo python setup.py install

from within the source directory.

* Usage *
scikits.ann exposes a single class, kdtree that wraps the Approximate Nearest Neighbor
library's kd-tree implementation. kdtree has a single (non-constructor) method, knn that
finds the indecies (of the points used to construct the kdtree) of the k-nearest neighbors
and the squared distances to those points. A little example will probably be much
more enlightening::
>>> import scikits.ann as ann

>>> import numpy as np

>>> k=ann.kdtree(np.array([[0.,0],[1,0],[1.5,2]]))

>>> k.knn([0,.2],1)
(array([[0]]), array([[ 0.04]]))

>>> k.knn([0,.2],2)
(array([[0, 1]]), array([[ 0.04, 1.04]]))

>>> k.knn([[0,.2],[.1,2],[3,1],[0,0]],2)
(array([[0, 1],
[2, 0],
[2, 1],
[1, 2]]), array([[ 0.04, 1.04],
[ 1.96, 4.01],
[ 3.25, 5. ],
[ 1. , 6.25]]))

>>> k.knn([[0,.2],[.1,2],[3,1],[0,0]],3)
(array([[ 0, 1, 2],
[ 2, 0, 1],
[ 2, 1, 0],
[ 1, 2, -1]]), array([[ 4.00000000e-002, 1.04000000e+000, 5.49000000e+000],
[ 1.96000000e+000, 4.01000000e+000, 4.81000000e+000],
[ 3.25000000e+000, 5.00000000e+000, 1.00000000e+001],
[ 1.00000000e+000, 6.25000000e+000, 1.79769313e+308]]))
Release History

Release History

0.2.dev-r803

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.dev-r801

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2.dev-r800

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
scikits.ann-0.2.dev_r803-py2.5-macosx-10.5-i386.egg (84.3 kB) Copy SHA256 Checksum SHA256 2.5 Egg Jan 31, 2008
scikits.ann-0.2.dev-r803.tar.gz (20.4 kB) Copy SHA256 Checksum SHA256 Source Jan 31, 2008

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting