Skip to main content

Scientific numbers with multiple uncertainties and correlation-aware, gaussian propagation.

Project description

![scinum logo](https://raw.githubusercontent.com/riga/scinum/master/logo250.png "scinum logo")

[![Build Status](https://travis-ci.org/riga/scinum.svg?branch=master)](https://travis-ci.org/riga/scinum) [![Documentation Status](https://readthedocs.org/projects/scinum/badge/?version=latest)](http://scinum.readthedocs.org/en/latest/?badge=latest) [![Package Status](https://img.shields.io/pypi/v/scinum.svg?style=flat)](https://pypi.python.org/pypi/scinum) [![License](https://img.shields.io/github/license/riga/scinum.svg)](https://github.com/riga/scinum/blob/master/LICENSE) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/riga/scinum/master?filepath=example.ipynb)

scinum provides a simple `Number` class that wraps plain floats or [NumPy](http://www.numpy.org/) arrays and adds support for multiple uncertainties, automatic (gaussian) error propagation, and scientific rounding.


### Usage

The following examples demonstrate the most common use cases. For more info, see the [API documentation](http://scinum.readthedocs.org/en/latest/?badge=latest) or open the [example.ipynb](https://github.com/riga/scinum/blob/master/example.ipynb) notebook on binder: [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/riga/scinum/master?filepath=example.ipynb)


###### Number definition

```python
from scinum import Number, UP, DOWN

num = Number(5, (2, 1))
print(num) # -> 5.00 +2.00-1.00

# get the nominal value
print(num.nominal) # -> 5.0
print(num.n) # -> 5.0 (shorthand)
print(num()) # -> 5.0 (shorthand)

# get uncertainties
print(num.get_uncertainty()) # -> (2.0, 1.0)
print(num.u()) # -> (2.0, 1.0) (shorthand)
print(num.u(direction=UP)) # -> 2.0

# get shifted values
print(num.get()) # -> 5.0 (no shift)
print(num.get(UP)) # -> 7.0 (up shift)
print(num(UP)) # -> 7.0 (up shift, shorthand)
print(num.get(DOWN)) # -> 4.0 (down shift)
print(num(DOWN)) # -> 4.0 (down shift, shorthand)
```


###### Multiple uncertainties

```python
from scinum import Number, ABS, REL

num = Number(2.5, {
"sourceA": 0.5, # absolute 0.5, both up and down
"sourceB": (1.0, 1.5), # absolute 1.0 up, 1.5 down
"sourceC": (REL, 0.1), # relative 10%, both up and down
"sourceD": (REL, 0.1, 0.2), # relative 10% up, 20% down
"sourceE": (1.0, REL, 0.2), # absolute 1.0 up, relative 20% down
"sourceF": (REL, 0.3, ABS, 0.3) # relative 30% up, absolute 0.3 down
})
```


###### Formatting and rounding

`Number.str()` provides some simple formatting tools, including `latex` and `root latex` support, as well as scientific rounding rules:

```python
# output formatting
n = Number(8848, 10)
n.str(unit="m") # -> "8848.0 +- 10.0 m"
n.str(unit="m", force_asymmetric=True) # -> "8848.0 +10.0-10.0 m"
n.str(unit="m", scientific=True) # -> "8.848 +- 0.01 x 1E3 m"
n.str(unit="m", si=True) # -> "8.848 +- 0.01 km"
n.str(unit="m", style="latex") # -> "$8848.0 \pm 10.0\,m$"
n.str(unit="m", style="latex", si=True) # -> "8.848 \pm 0.01\,km"
n.str(unit="m", style="root") # -> "8848.0 #pm 10.0 m"
n.str(unit="m", style="root", si=True) # -> "8.848 #pm 0.01 km"

# output rounding
n = Number(17.321, {"a": 1.158, "b": 0.453})
n.str() # -> '17.321 +- 1.158 (a) +- 0.453 (b)'
n.str("%.1f") # -> '17.3 +- 1.2 (a) +- 0.5 (b)'
n.str("publication") # -> '17.32 +- 1.16 (a) +- 0.45 (b)'
n.str("pdg") # -> '17.3 +- 1.2 (a) +- 0.5 (b)'
```

For situations that require more sophisticated rounding and formatting rules, you might want to checkout:

- [`sn.split_value()`](http://scinum.readthedocs.io/en/latest/#split-value)
- [`sn.match_precision()`](http://scinum.readthedocs.io/en/latest/#match-precision)
- [`sn.round_uncertainty()`](http://scinum.readthedocs.io/en/latest/#round-uncertainty)
- [`sn.round_value()`](http://scinum.readthedocs.io/en/latest/#round-value)
- [`sn.infer_si_prefix()`](http://scinum.readthedocs.io/en/latest/#infer-si-prefix)


###### NumPy arrays

```python
from scinum import Number, ABS, REL
import numpy as np

num = Number(np.array([3, 4, 5]), 2)
print(num)
# [ 3. 4. 5.]
# + [ 2. 2. 2.]
# - [ 2. 2. 2.]

num = Number(np.array([3, 4, 5]), {
"sourceA": (np.array([0.1, 0.2, 0.3]), REL, 0.5) # absolute values for up, 50% down
})
print(num)
# [ 3. 4. 5.]
# + sourceA [ 0.1 0.2 0.3]
# - sourceA [ 1.5 2. 2.5]
```


###### Uncertainty propagation

```python
from scinum import Number

num = Number(5, 1)
print(num + 2) # -> '7.0 +- 1.0'
print(num * 3) # -> '15.0 +- 3.0'

num2 = Number(2.5, 1.5)
print(num + num2) # -> '7.5 +- 1.80277563773'
print(num * num2) # -> '12.5 +- 7.90569415042'

# add num2 to num and consider their uncertainties to be fully correlated, i.e. rho = 1
num.add(num2, rho=1)
print(num) # -> '7.5 +- 2.5'
```


###### Math operations

As a drop-in replacement for the `math` module, scinum provides an object `ops` that contains math operations that are aware of guassian error propagation.

```python
from scinum import Number, ops

num = ops.log(Number(5, 2))
print(num) # -> 1.61 (+0.40, -0.40)

num = ops.exp(ops.tan(Number(5, 2)))
print(num) # -> 0.03 (+0.85, -0.85)
```


###### Custom operations

There might be situations where a specific operation is not (yet) contained in the `ops` object. In this case, you can easily register a new one via:

```python
from scinum import Number, ops

@ops.register
def my_op(x):
return x * 2 + 1

@my_op.derive
def my_op(x):
return 2

num = ops.my_op(Number(5, 2))
print(num) # -> 11.00 (+4.00, -4.00)
```

Please note that there is no need to register *simple* functions like in the particular example above as most of them are just composite operations whose propagation rules (derivatives) are already known.


### Installation and dependencies

Via [pip](https://pypi.python.org/pypi/scinum)

```bash
pip install scinum
```

or by simply copying the file into your project.

Numpy is an optional dependency.


### Contributing

If you like to contribute, I'm happy to receive pull requests. Just make sure to add a new test cases and run them via:

```bash
> python -m unittest tests
```


##### Testing

In general, tests should be run for different environments:

- Python 2.7
- Python 3.X (X ≥ 5)


##### Docker

To run tests in a docker container, do:

```bash
git clone https://github.com/riga/scinum.git
cd scinum

docker run --rm -v `pwd`:/scinum -w /scinum python:3.6 python -m unittest tests
```


### Development

- Source hosted at [GitHub](https://github.com/riga/scinum)
- Report issues, questions, feature requests on [GitHub Issues](https://github.com/riga/scinum/issues)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scinum-1.0.1.tar.gz (18.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page