Skip to main content

Complete pipeline for easy data fitting with Python.

Project description

PyPI GitHub license Requires.io CircleCI Codecov

Built from makenew/python-package.

Description

figure

Complete pipeline for easy data fitting with Python 3.

Check out the example fits on Fitalyzer. See the Fitalyzer README for details on how to use Fitalyzer for visualizing your fits.

Installation

This package is registered on the Python Package Index (PyPI) as scipy_data_fitting.

Add this line to your application’s requirements.txt

scipy_data_fitting

and install it with

$ pip install -r requirements.txt

If you are writing a Python package which will depend on this, add this to your requirements in setup.py.

Alternatively, install it directly using pip with

$ pip install scipy_data_fitting

Documentation

Documentation is generated from source with pdoc. The latest version is hosted at pythonhosted.org/scipy-data_fitting/.

To get started quickly, check out the examples.

Then, refer to the source documentation for details on how to use each class.

Basic Usage

from scipy_data_fitting import Data, Model, Fit, Plot

# Load data from a CSV file.
data = Data('linear')
data.path = 'linear.csv'
data.error = (0.5, None)

# Create a linear model.
model = Model('linear')
model.add_symbols('t', 'v', 'x_0')
t, v, x_0 = model.get_symbols('t', 'v', 'x_0')
model.expressions['line'] = v * t + x_0

# Create the fit using the data and model.
fit = Fit('linear', data=data, model=model)
fit.expression = 'line'
fit.independent = {'symbol': 't', 'name': 'Time', 'units': 's'}
fit.dependent = {'name': 'Distance', 'units': 'm'}
fit.parameters = [
    {'symbol': 'v', 'guess': 1, 'units': 'm/s'},
    {'symbol': 'x_0', 'value': 1, 'units': 'm'},
]

# Save the fit result to a json file.
fit.to_json(fit.name + '.json', meta=fit.metadata)

# Save a plot of the fit to an image file.
plot = Plot(fit)
plot.save(fit.name + '.svg')
plot.close()

Controlling the fitting process

The above example will fit the line using the default algorithm scipy.optimize.curve_fit.

For a linear fit, it may be more desirable to use a more efficient algorithm.

For example, to use numpy.polyfit, one could set a fit_function and allow both parameters to vary,

fit.parameters = [
    {'symbol': 'v', 'guess': 1, 'units': 'm/s'},
    {'symbol': 'x_0', 'guess': 1, 'units': 'm'},
]
fit.options['fit_function'] = \
    lambda f, x, y, p0, **op: (numpy.polyfit(x, y, 1), )

Controlling the fitting process this way allows, for example, incorporating error values and computing and returning goodness of fit information.

See scipy_data_fitting.Fit.options for further details on how to control the fit and also how to use lmfit.

Development and Testing

Source Code

The scipy-data_fitting source is hosted on GitHub. Clone the project with

$ git clone https://github.com/razor-x/scipy-data_fitting.git

Requirements

You will need Python 3 with pip.

Install the development dependencies with

$ pip install -r requirements.devel.txt

Tests

Lint code with

$ python setup.py lint

Run tests with

$ python setup.py test

or

$ make test

Documentation

Generate documentation with pdoc by running

$ make docs

Examples

Run an example with

$ python examples/example_fit.py

or run all the examples with

$ make examples

Contributing

Please submit and comment on bug reports and feature requests.

To submit a patch:

  1. Fork it (https://github.com/razor-x/scipy-data_fitting/fork).

  2. Create your feature branch (git checkout -b my-new-feature).

  3. Make changes. Write and run tests.

  4. Commit your changes (git commit -am 'Add some feature').

  5. Push to the branch (git push origin my-new-feature).

  6. Create a new Pull Request.

License

This Python package is licensed under the MIT license.

Warranty

This software is provided “as is” and without any express or implied warranties, including, without limitation, the implied warranties of merchantibility and fitness for a particular purpose.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-data_fitting-1.0.2.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

scipy_data_fitting-1.0.2-py3-none-any.whl (23.8 kB view details)

Uploaded Python 3

File details

Details for the file scipy-data_fitting-1.0.2.tar.gz.

File metadata

File hashes

Hashes for scipy-data_fitting-1.0.2.tar.gz
Algorithm Hash digest
SHA256 7ba95cf86ee2ac762c199207c337d183bba6d1cd95271a93a7a16fb6c8fe0ecf
MD5 97971526749b6d5ea5ae64580b533b20
BLAKE2b-256 d23cadb97631d99164322a6c923212e9e838221fda12bf05e3e3aa29f6f75777

See more details on using hashes here.

File details

Details for the file scipy_data_fitting-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for scipy_data_fitting-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 df874e9b636c32bca712fc61ddc3fccc042965ebb21ea5765ace48b13ca7de4f
MD5 8bf7d97859f7a7ab085cd3d448ad4567
BLAKE2b-256 64908c56dd374722a4ad010f484ea883ce9a82b18258ae8dca1da8860835ea2c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page