Provides OpenBLAS for python packaging
Project description
OpenBLAS
We build OpenBLAS on Travis-CI (for linux aarch64, ppc64, s390x) and github actions for linux, windows, macOS x86_64 and macOS arm64.
First, tarballs are built using do_build_lib
in tools/build_steps.sh
(on
posix in a docker and drectly on macos) or build_openblas.sh
on windows.
Then the shared object and header files from the tarball are used to build the
wheel via tools/build_wheel.sh
, and the wheels uploaded to
https://anaconda.org/scientific=python-nightly-wheels/scipy_openblas32 and
https://anaconda.org/scientific=python-nightly-wheels/scipy_openblas64 via
tools/upload_to_anaconda_staging.sh
. For a release, the wheels are uploaded
to PyPI by downloading them via tools/dowlnload-wheels.py and uploading via
twine.
The wheel is self-contained, it includes all needed gfortran support libraries. On windows, this is a single DLL.
The wheel supplies interfaces for building and using OpenBLAS in a python project like SciPy or NumPy:
Buildtime
get_include_dir()
,get_lib_dir()
andget_library()
for use in compiler or project argumentsget_pkg_config()
will return a multi-line text that can be saved into a file and used with pkg-config for build systems like meson. This works around the problem of relocatable pkg-config files since the windows build uses pkgconfiglite v0.28 which does not support--define-prefix
.
Runtime
- importing will load openblas into the executable and provide the openblas symbols.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fdcd2806c4b0f8c8dfca539c8a6671e15cb51a94b05c8aca322d53ba6ec12dba |
|
MD5 | 907a00e8e98ca2b30508e3bfc26cdd3a |
|
BLAKE2b-256 | 989e9358eaa5e8077a217c393b9136a4ee3107de0e819f5c687d9bf78425dbed |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-musllinux_1_2_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53aa2d71cc020db251a6e5b5b80d03d9baaec1069430b2e0f6dead82b05e00f0 |
|
MD5 | f6eebbae88717e6bea544220a696a211 |
|
BLAKE2b-256 | b9d44b1bae93a93fd32ac421f3103b1ba33bb0c9503436eba3a6eabb42ef071d |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-musllinux_1_2_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a7eca4d4582ca5f04e8a68a472c9bafc7eb9dacea1fb486776b4243ae9346c4 |
|
MD5 | 6057b8d84636a512c3f4e27df43b3b42 |
|
BLAKE2b-256 | 539cc043298cccbe9a72c6b6a261c4c7a0491846d012fee8442ce258cd72b31f |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb5dcab6ecdb4da885e55445f10fbf06b4d2e74b54c76c092fc48e71a8e2a886 |
|
MD5 | 1b6fec210cf3dfff72ab4ad6bc72f128 |
|
BLAKE2b-256 | daf8932f50444abc4a383de83c5304081f80c071f681483de4f915cbc32a338a |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-musllinux_1_1_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eab6043a08e6a71b72fd8757a94b87348f7c91ebb02c7fc7d53db76aba9d25d1 |
|
MD5 | 4b5e28c2e68c8b3cbc87eed5662383be |
|
BLAKE2b-256 | 13198bc2f89703935d30234edd06fde197f653745d8945bb76fcce631281957c |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 146d5730f7c6cd7670349d6ac1bd2636d8d51cc9efd388c37c9c4ef7ea02c70d |
|
MD5 | 296041bab8f5ec8c04f7d064b9ca92d8 |
|
BLAKE2b-256 | 6ae89399338f1a90164501a3d73d1388efc202d0d22c5fb3adc61b9798e83d7e |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 643abc14ae5c820f44478031adf528a675c3fdac80c556c4e5e72eed6b34cca8 |
|
MD5 | ac1a3b27145b99daf6c2b9ae0bede930 |
|
BLAKE2b-256 | 18c0bc5bb62e321a67b4d820055b6325e17a2bd584b4ec36e628eae4f4613e5c |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ed67b6d6bcc3fe6c9c6089e8e30ba275a17e1547217cb3fe2450c038daa451a |
|
MD5 | 7841a1d61c1751f01520af09e9970591 |
|
BLAKE2b-256 | 3a67c14e90f25c3f1feb320580fa2d17f11c12158b6bb07663faf616372c9dd2 |
Hashes for scipy_openblas64-0.3.28.0.2-py3-none-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 39ab094bbdb66efdad47bcf211b69927ad21e6c4c5efa32a53569dcd9011550c |
|
MD5 | 0492c2f1a741e67cb7ff189df2179f2c |
|
BLAKE2b-256 | bcc2c098f7a6f4c7494a48fa869f49b6051b370891d40520f227ec767cecb349 |