Skip to main content

Provides OpenBLAS for python packaging

Project description

OpenBLAS

We build OpenBLAS on Travis-CI (for linux aarch64, ppc64, s390x) and github actions for linux, windows, macOS x86_64 and macOS arm64.

Tarballs are at https://anaconda.org/scientific-python-nightly-wheels/openblas-libs/files

A project using the tarball, for Manylinux or macOS, will need the gfortran-install submodule used here, from https://github.com/MacPython/gfortran-install

We also build and upload a pip-installable wheel. The wheel is self-contained, it includes all needed gfortran support libraries. On windows, this is a single DLL. On linux we use auditwheel repair to mangle the shared object names.

The wheel supplies interfaces for building and using OpenBLAS in a python project like SciPy or NumPy:

Buildtime

  • get_include_dir(), get_lib_dir() and get_library() for use in compiler or project arguments
  • get_pkg_config() will return a multi-line text that can be saved into a file and used with pkg-config for build systems like meson. This works around the problem of relocatable pkg-config files since the windows build uses pkgconfiglite v0.28 which does not support --define-prefix.

Runtime

  • importing will load openblas into the executable and provide the openblas symbols.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

scipy_openblas64-0.3.27.0.1-py3-none-win_amd64.whl (10.7 MB view details)

Uploaded Python 3 Windows x86-64

scipy_openblas64-0.3.27.0.1-py3-none-musllinux_1_1_x86_64.whl (11.0 MB view details)

Uploaded Python 3 musllinux: musl 1.1+ x86-64

scipy_openblas64-0.3.27.0.1-py3-none-musllinux_1_1_aarch64.whl (7.2 MB view details)

Uploaded Python 3 musllinux: musl 1.1+ ARM64

scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.2 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (8.9 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ppc64le

scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.6 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64

scipy_openblas64-0.3.27.0.1-py3-none-macosx_11_0_arm64.whl (8.2 MB view details)

Uploaded Python 3 macOS 11.0+ ARM64

scipy_openblas64-0.3.27.0.1-py3-none-macosx_10_9_x86_64.whl (14.4 MB view details)

Uploaded Python 3 macOS 10.9+ x86-64

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 188064945311a7f087923f96044abb7b3dc95e514e4fe7ceeb007507b05ff4bf
MD5 206f5bae9a67c40ea531052c5f67206c
BLAKE2b-256 a4030283cbb60e107c2d9d6536ef5c89cb66e6aba6591bce318c9d257ec9f48b

See more details on using hashes here.

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dd1c7f1b17bac9b4d0ddc9b9dbdc3f1282441f651bcb2643d77fce021577cc06
MD5 f894e1aaff9f370dde6b9a2f4008363a
BLAKE2b-256 ba0100861bdf5f66524de75c8693357c663664a052f4a3adcd0245625e205807

See more details on using hashes here.

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 082ed7334d85773a1c360f477b438e271be8ca3b7295e269acf52a7c55f83cd4
MD5 b45b67edb2284db52cbdabb8f940fb35
BLAKE2b-256 b24984062f05c5c1d79d69628e75dc1f9667c8da96ca8059b616d17664685671

See more details on using hashes here.

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe097a39191de53962f512aa92b8cc79400e8296331ef13991313c10930330f2
MD5 cc777f1216956daeae27eb05a83e9e1c
BLAKE2b-256 bfc97df76726e7680dfa78be68447bd8c6836168cb6bed84f20526af3ef1dce8

See more details on using hashes here.

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0b16a20156578b1cc49ffb83f906ce11781b43c788fbe6012328efc44b425037
MD5 2a9f984e0084de0431b4e07735f351e5
BLAKE2b-256 8be7bfcd92151fa771bbab252e3fee9d14345075a86d9bd5180e24d53011b35c

See more details on using hashes here.

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e3c8d492c6699b68fce8d5038a5fea77edfc1872f24e8996756ff176ffc2eb8
MD5 91ecd3e8fd3c15bf31dea3f2d231e87c
BLAKE2b-256 1704a9c0888c4d4c5691ae08ed636288095f4a05f845c4cf7dda9c64bee13791

See more details on using hashes here.

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 738d4fba06f96de41cba785a4fbf6f271b865c17a2e826710f5907bd7a280921
MD5 3526319718cd16a6ab9ac7f0b6114cc2
BLAKE2b-256 8792b85585f8240e06f9521a98b6e4891efc549b33f72a049b905740cf770e21

See more details on using hashes here.

File details

Details for the file scipy_openblas64-0.3.27.0.1-py3-none-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scipy_openblas64-0.3.27.0.1-py3-none-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a1c1c32d4a53cc89c74c3bb32f139e56fd1179fa724d38fa1da188bf00dddef
MD5 e390a0a29323491053ed8ac668e58b33
BLAKE2b-256 50c206c6a8a56edd0ec0148e3d88655ea49517629fe23024ef2755c0ee6a11ac

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page