Skip to main content

transform an ill-conditioned quadratic matrix to a positive semidefinite matrix

Project description

Binder

scipy-psdm

Transform an ill-conditioned quadratic matrix into a positive semi-definite matrix.

Installation

The scipy-psdm git repo is available as PyPi package

pip install scipy-psdm

Usage

Lurie-Goldberg Algorithm to transform an ill-conditioned quadratic matrix into a positive semi-definite matrix.

import scipy_psdm as psdm
import numpy as np

# A matrix with subjectively set correlations
mat = [[ 1.   , -0.948,  0.099, -0.129],
       [-0.948,  1.   , -0.591,  0.239],
       [ 0.099, -0.591,  1.   ,  0.058],
       [-0.129,  0.239,  0.058,  1.   ]]
mat = np.array(mat)

# Convert to a positive semi-definite matrix
rho = psdm.luriegold(mat)
print(rho.round(3))

Generate correlated random numbers

import scipy_psdm as psdm
X, rho = psdm.randcorr(n_obs=100, n_vars=5, random_state=42)

# compare
import numpy as np
print(rho.round(3))
print(np.corrcoef(X, rowvar=False).round(3))

Check the examples folder for notebooks.

Commands

Install a virtual environment

python3.6 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip setuptools wheel twine
pip3 install -r requirements.txt

(If your git repo is stored in a folder with whitespaces, then don't use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Start virtual env: source .venv/bin/activate
  • Jupyter for the examples: jupyter lab
  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
  • Run Unit Tests: pytest
  • Upload to PyPi with twine: python setup.py sdist && twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for scipy-psdm, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size scipy-psdm-0.1.0.tar.gz (4.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page