Skip to main content

transform an ill-conditioned quadratic matrix to a positive semidefinite matrix

Project description

PyPI version PyPi downloads

scipy-psdm

Transform an ill-conditioned quadratic matrix into a positive semi-definite matrix.

Installation

The scipy-psdm git repo is available as PyPi package

pip install scipy-psdm

Usage

Lurie-Goldberg Algorithm to transform an ill-conditioned quadratic matrix into a positive semi-definite matrix.

import scipy_psdm as psdm
import numpy as np

# A matrix with subjectively set correlations
mat = [[ 1.   , -0.948,  0.099, -0.129],
       [-0.948,  1.   , -0.591,  0.239],
       [ 0.099, -0.591,  1.   ,  0.058],
       [-0.129,  0.239,  0.058,  1.   ]]
mat = np.array(mat)

# Convert to a positive semi-definite matrix
rho = psdm.approximate_correlation_matrix(mat)
print(rho.round(3))

Generate correlated random numbers

import scipy_psdm as psdm
X, rho = psdm.randcorr(n_obs=100, n_vars=5, random_state=42)

# compare
import numpy as np
print(rho.round(3))
print(np.corrcoef(X, rowvar=False).round(3))

Check the examples folder for notebooks.

Appendix

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip3 install -r requirements.txt
pip3 install -r requirements-dev.txt
pip3 install -r requirements-demo.txt

(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Start virtual env: source .venv/bin/activate
  • Jupyter for the examples: jupyter lab
  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
  • Run Unit Tests: pytest -v

Publish

pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-psdm-0.2.2.tar.gz (5.3 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page