Skip to main content

SciPy: Scientific Library for Python

Project description

SciPy (pronounced “Sigh Pie”) is open-source software for mathematics, science, and engineering. The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

Project details


Release history Release notifications | RSS feed

This version

1.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.1.0.tar.gz (15.6 MB view details)

Uploaded Source

Built Distributions

scipy-1.1.0-cp37-none-win_amd64.whl (30.9 MB view details)

Uploaded CPython 3.7 Windows x86-64

scipy-1.1.0-cp37-none-win32.whl (26.1 MB view details)

Uploaded CPython 3.7 Windows x86

scipy-1.1.0-cp37-cp37m-manylinux1_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.7m

scipy-1.1.0-cp37-cp37m-manylinux1_i686.whl (25.7 MB view details)

Uploaded CPython 3.7m

scipy-1.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scipy-1.1.0-cp36-none-win_amd64.whl (31.1 MB view details)

Uploaded CPython 3.6 Windows x86-64

scipy-1.1.0-cp36-none-win32.whl (26.3 MB view details)

Uploaded CPython 3.6 Windows x86

scipy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl (31.2 MB view details)

Uploaded CPython 3.6m

scipy-1.1.0-cp36-cp36m-manylinux1_i686.whl (25.7 MB view details)

Uploaded CPython 3.6m

scipy-1.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.6m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scipy-1.1.0-cp35-none-win_amd64.whl (31.1 MB view details)

Uploaded CPython 3.5 Windows x86-64

scipy-1.1.0-cp35-none-win32.whl (26.2 MB view details)

Uploaded CPython 3.5 Windows x86

scipy-1.1.0-cp35-cp35m-manylinux1_x86_64.whl (33.1 MB view details)

Uploaded CPython 3.5m

scipy-1.1.0-cp35-cp35m-manylinux1_i686.whl (27.5 MB view details)

Uploaded CPython 3.5m

scipy-1.1.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scipy-1.1.0-cp34-none-win_amd64.whl (30.6 MB view details)

Uploaded CPython 3.4 Windows x86-64

scipy-1.1.0-cp34-none-win32.whl (26.0 MB view details)

Uploaded CPython 3.4 Windows x86

scipy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl (31.1 MB view details)

Uploaded CPython 3.4m

scipy-1.1.0-cp34-cp34m-manylinux1_i686.whl (25.9 MB view details)

Uploaded CPython 3.4m

scipy-1.1.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

scipy-1.1.0-cp27-none-win_amd64.whl (31.5 MB view details)

Uploaded CPython 2.7 Windows x86-64

scipy-1.1.0-cp27-none-win32.whl (26.7 MB view details)

Uploaded CPython 2.7 Windows x86

scipy-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl (30.8 MB view details)

Uploaded CPython 2.7mu

scipy-1.1.0-cp27-cp27mu-manylinux1_i686.whl (25.5 MB view details)

Uploaded CPython 2.7mu

scipy-1.1.0-cp27-cp27m-manylinux1_x86_64.whl (30.8 MB view details)

Uploaded CPython 2.7m

scipy-1.1.0-cp27-cp27m-manylinux1_i686.whl (25.5 MB view details)

Uploaded CPython 2.7m

scipy-1.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (16.8 MB view details)

Uploaded CPython 2.7m macOS 10.10+ Intel (x86-64, i386) macOS 10.10+ x86-64 macOS 10.6+ Intel (x86-64, i386) macOS 10.9+ Intel (x86-64, i386) macOS 10.9+ x86-64

File details

Details for the file scipy-1.1.0.tar.gz.

File metadata

  • Download URL: scipy-1.1.0.tar.gz
  • Upload date:
  • Size: 15.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scipy-1.1.0.tar.gz
Algorithm Hash digest
SHA256 878352408424dffaa695ffedf2f9f92844e116686923ed9aa8626fc30d32cfd1
MD5 aa6bcc85276b6f25e17bcfc4dede8718
BLAKE2b-256 07767e844757b9f3bf5ab9f951ccd3e4a8eed91ab8720b0aac8c2adcc2fdae9f

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 625f25a6b7d795e8830cb70439453c9f163e6870e710ec99eba5722775b318f3
MD5 e4580e86ab3c0e665ef2722f2c3d51eb
BLAKE2b-256 c4f3752fd6778a9d07fddb2b02dac5895287e594d2d0d156a2a422c710f6a851

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp37-none-win32.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 f25c281f12c0da726c6ed00535ca5d1622ec755c30a3f8eafef26cf43fede694
MD5 d764499ac07d55f0338d2cf72a957efc
BLAKE2b-256 e8086ceee982af40b23566016e29a7a81ed258e739d2d718e03049446c3ccf31

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8b984f0821577d889f3c7ca8445564175fb4ac7c7f9659b7c60bef95b2b70e76
MD5 d9d551c48d544999fc27e0e0209fba78
BLAKE2b-256 40de0c22c6754370ba6b1fa8e53bd6e514d4a41a181125d405a501c215cbdbd6

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d40dc7f494b06dcee0d303e51a00451b2da6119acbeaccf8369f2d29e28917ac
MD5 af27ca76ad98db149b0f131c0a91823e
BLAKE2b-256 d6cd7f873ef696cb3f6afeb59306975147c51e62119dacecc1ce9364d0419d1b

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 42d9149a2fff7affdd352d157fa5717033767857c11bd55aa4a519a44343dfef
MD5 830f6654abcec550c491c1ec04b773c1
BLAKE2b-256 4c4a440cc9703938bbc86636ff6b9e17810f3d0f06e9b41891c5433dc4cd9091

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 698c6409da58686f2df3d6f815491fd5b4c2de6817a45379517c92366eea208f
MD5 748e458b4a488894007afdc5740dca12
BLAKE2b-256 62e2364f0bcc641aeff79d743c732769d5dc31a1e78c27699229431412c4b425

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp36-none-win32.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp36-none-win32.whl
Algorithm Hash digest
SHA256 0e9bb7efe5f051ea7212555b290e784b82f21ffd0f655405ac4f87e288b730b3
MD5 a47007af1f8fa31abffddca45aa8dba6
BLAKE2b-256 302a8bd20295c774e3f19b5f8b71d75ef7e802673852ca3ae2e1d231d0f1c7a2

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 729f8f8363d32cebcb946de278324ab43d28096f36593be6281ca1ee86ce6559
MD5 6ceb8c9e15464bc097d6fb033df36436
BLAKE2b-256 a80bf163da98d3a01b3e0ef1cab8dd2123c34aee2bafbb1c5bffa354cc8a1730

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 404a00314e85eca9d46b80929571b938e97a143b4f2ddc2b2b3c91a4c4ead9c5
MD5 c20dd7bd0ee52dda5d9f364ed30868e0
BLAKE2b-256 86a6539c07dfd88ae47cd618b6b13bd7350093ffe17ec9e31f28bf13771de37b

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e24e22c8d98d3c704bb3410bce9b69e122a8de487ad3dbfe9985d154e5c03a40
MD5 911883861aaa4030f49290134057cd14
BLAKE2b-256 a0b670bf61c1badb5fea82d4c558e05e76c2dee5e77bb072fe465d7c7a87287d

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 d0cdd5658b49a722783b8b4f61a6f1f9c75042d0e29a30ccb6cacc9b25f6d9e2
MD5 5231103cf8f60d377395992c64dca3e8
BLAKE2b-256 84fcf0adfaea340732ff25ccba17d1dd6fcc81fda302dbf31212ef7395463720

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 3ad73dfc6f82e494195144bd3a129c7241e761179b7cb5c07b9a0ede99c686f3
MD5 53aa31c367ae288d9268ab80fcabae98
BLAKE2b-256 efd97566e0576d21a399dc071143ab21216af1526da1421959306ce51b899af5

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 108c16640849e5827e7d51023efb3bd79244098c3f21e4897a1007720cb7ce37
MD5 959d873bda4753d33b4f2f4e882027d7
BLAKE2b-256 cd325196b64476bd41d596a8aba43506e2403e019c90e1a3dfc21d51b83db5a6

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0611ee97296265af4a21164a5323f8c1b4e8e15c582d3dfa7610825900136bb7
MD5 85abc7a569fb1a0eb83e889c2dbf9415
BLAKE2b-256 2fe0a5aa5ba01fc8e2921ea7b7a58793f7b9087649e1edc721060db1df366329

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 423b3ff76957d29d1cce1bc0d62ebaf9a3fdfaf62344e3fdec14619bb7b5ad3a
MD5 02c5f91e021aff8e0616ddb3e13b2939
BLAKE2b-256 6db8ff3eedd00906118ff71fa47e0656c5916901fbb354531cbc528ef01109a5

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 ee677635393414930541a096fc8e61634304bb0153e4e02b75685b11eba14cae
MD5 f53881e219fe7b1e7baafc16076b8037
BLAKE2b-256 6feecfce56ea456a809b983ac4089876dbffd15233c17df7bca1e35e84c3ce95

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 8f841bbc21d3dad2111a94c490fb0a591b8612ffea86b8e5571746ae76a3deac
MD5 149d429369a8d4c65340da5f4d7f3c5c
BLAKE2b-256 419f0679655521e4916046fec46a5281c42ee2dc120a2303166e783f08971126

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3b243c77a822cd034dad53058d7c2abf80062aa6f4a32e9799c95d6391558631
MD5 0beed5f35d90e47ca0a19df1b4d6705b
BLAKE2b-256 56b51a47572236785278db0c8a1e7bb4040eebb63b78fbb470b6f5efc357ffcf

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f0521af1b722265d824d6ad055acfe9bd3341765735c44b5a4d0069e189a0f40
MD5 fe52c136fd85780e1b8eae61f547573f
BLAKE2b-256 cecc06e6a9f2e4c6df1010143fad3bd189626fe27f904e963c14893eb8c43dd1

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 0e645dbfc03f279e1946cf07c9c754c2a1859cb4a41c5f70b25f6b3a586b6dbd
MD5 28a40c0cc6516faa85c2d6a4b759d49b
BLAKE2b-256 3aad64a741013cbdf1c364779e54d7413554c4f6c8fd8d790a8c805f593d10ea

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 e7a01e53163818d56eabddcafdc2090e9daba178aad05516b20c6591c4811020
MD5 af1a53b10b754bb73afbce2d4333e25a
BLAKE2b-256 d2a70d698589a3c6c44f81078a52518c8e64c4ed579a862105b2bff5a1f14ff4

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 dfc5080c38dde3f43d8fbb9c0539a7839683475226cf83e4b24363b227dfe552
MD5 6fd9d352028851983efadcd7cc93486a
BLAKE2b-256 1ffaa65088a42ed6699027c01fc0fa9fb35eb435fb6c66307c0ce541db333f35

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 08237eda23fd8e4e54838258b124f1cd141379a5f281b0a234ca99b38918c07a
MD5 1370771ae0d6032c415cd1ff74be0308
BLAKE2b-256 2af3de9c1bd16311982711209edaa8c6caa962db30ebb6a8cc6f1dcd2d3ef616

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8190770146a4c8ed5d330d5b5ad1c76251c63349d25c96b3094875b930c44692
MD5 5a6981b403117237066a289df8a3e41e
BLAKE2b-256 98fb149f95e8c4ed08829acfa8b33e4fdb29311eee7526b20ae3bc9a65f6c05f

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d8491d4784aceb1f100ddb8e31239c54e4afab8d607928a9f7ef2469ec35ae01
MD5 4cd3a7840cccb7bd8001cca94cd5264d
BLAKE2b-256 196859597fa0d8bcd03d8b8a0e838def137a0fdf9b636999b65d4874af30fa63

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c22b27371b3866c92796e5d7907e914f0e58a36d3222c5d436ddd3f0e354227a
MD5 8f47f7779047f19ab0b54821bfbf699e
BLAKE2b-256 6c63b0ae6ba4a2f16ee72f7539dfeeccfdf86171d33efc332d01f8fa5cb48ac1

See more details on using hashes here.

File details

Details for the file scipy-1.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.1.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 340ef70f5b0f4e2b4b43c8c8061165911bc6b2ad16f8de85d9774545e2c47463
MD5 5f5dac4aeb117e977eba6b57231f467a
BLAKE2b-256 d1d63eac96ffcf7cbeb37ed72982cf3fdd3138472cb04ab32cdce1f444d765f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page