Skip to main content

Fundamental algorithms for scientific computing in Python

Project description

doc/source/_static/logo.svg https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A https://img.shields.io/pypi/dm/scipy.svg?label=Pypi%20downloads https://img.shields.io/conda/dn/conda-forge/scipy.svg?label=Conda%20downloads https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue

SciPy (pronounced “Sigh Pie”) is an open-source software for mathematics, science, and engineering. It includes modules for statistics, optimization, integration, linear algebra, Fourier transforms, signal and image processing, ODE solvers, and more.

SciPy is built to work with NumPy arrays, and provides many user-friendly and efficient numerical routines, such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install, and are free of charge. NumPy and SciPy are easy to use, but powerful enough to be depended upon by some of the world’s leading scientists and engineers. If you need to manipulate numbers on a computer and display or publish the results, give SciPy a try!

For the installation instructions, see our install guide.

Call for Contributions

We appreciate and welcome contributions. Small improvements or fixes are always appreciated; issues labeled as “good first issue” may be a good starting point. Have a look at our contributing guide.

Writing code isn’t the only way to contribute to SciPy. You can also:

  • review pull requests

  • triage issues

  • develop tutorials, presentations, and other educational materials

  • maintain and improve our website

  • develop graphic design for our brand assets and promotional materials

  • help with outreach and onboard new contributors

  • write grant proposals and help with other fundraising efforts

If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by leaving a comment on a relevant issue that is already open.

If you are new to contributing to open source, this guide helps explain why, what, and how to get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipy-1.10.0rc1.tar.gz (42.4 MB view details)

Uploaded Source

Built Distributions

scipy-1.10.0rc1-cp311-cp311-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

scipy-1.10.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc1-cp311-cp311-macosx_12_0_arm64.whl (28.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scipy-1.10.0rc1-cp311-cp311-macosx_10_15_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

scipy-1.10.0rc1-cp310-cp310-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

scipy-1.10.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (30.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc1-cp310-cp310-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scipy-1.10.0rc1-cp310-cp310-macosx_10_15_x86_64.whl (35.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

scipy-1.10.0rc1-cp39-cp39-win_amd64.whl (42.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

scipy-1.10.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc1-cp39-cp39-macosx_12_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scipy-1.10.0rc1-cp39-cp39-macosx_10_15_x86_64.whl (35.2 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

scipy-1.10.0rc1-cp38-cp38-win_amd64.whl (42.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

scipy-1.10.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

scipy-1.10.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (31.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

scipy-1.10.0rc1-cp38-cp38-macosx_12_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

scipy-1.10.0rc1-cp38-cp38-macosx_10_15_x86_64.whl (35.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file scipy-1.10.0rc1.tar.gz.

File metadata

  • Download URL: scipy-1.10.0rc1.tar.gz
  • Upload date:
  • Size: 42.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc1.tar.gz
Algorithm Hash digest
SHA256 f094b9df619dfa67166244b70530fc12fc55961bd3a783c707a1f9d2e47242e8
MD5 72ab64d1cd5413e3385c384ab48a94ab
BLAKE2b-256 a2ce2592c3b550cf8f68879d4ff2159f3c689ee6f032f8fc9059022074f7bd75

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 986b337395f3f8ec21cf00af57860d79f1d062baf1eda338f29a3a8337a78b62
MD5 560cc0d75604dc254e98b9fe8db45f74
BLAKE2b-256 ec640705a75543861d33d2b6f845e4f1856367c15390c76c44ddaca035f5ea49

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b3da3b4d55b3cc5841a0718cc0ec20efc8a4cbd8a896e9e10af272f4444a66d
MD5 df83e9e747765e450119302e56f228ce
BLAKE2b-256 375ce65a387007cf90c8dc84e25275955dce99984882c9d5519fa8fee7f45e6d

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 487bdd1e06eeeba39da610de113e56bdfdff4801a9a985b4297a562077e16821
MD5 bf3d16e4b9f88828efdd2ff9ced7106e
BLAKE2b-256 c5ced8e30e3585139b9f106f9391b57bbc888076e75f4379c90c995b66186969

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 875a330c5e6f6ee8f7893d795166168dbf87035d34721d6d4baef6456aacbee5
MD5 03a46b88bdf23119f0a8f4600fa35cf1
BLAKE2b-256 04a7f7b8cd65ab36f57728216d573de16223399503f6f4e73f2c7a0c3f69560d

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5f694a9b930b87aa91b819f1b14f13c278a731b0293801d39480150b247e3974
MD5 a6344f8d45d4bd2ac765216e53a0d1ff
BLAKE2b-256 390a4e333a0257bc6029cd0dd067bea359d0c6c59c9957f1060313244c46c9bb

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b92ab7e8f09654abedf225b967e0db32a0e6510400f8ae4d959e3f9887e3c6ad
MD5 91ed8c8320d0a9e5716f7a81e71e769e
BLAKE2b-256 4acd0074f88cfa3784e14337461d8d9a476fa7a2f94fe09a3866988dab824d36

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac89558d6314cc5e2177b2531eb157daa6a701a8ccd77312a1577952ede60e89
MD5 845300e136bdda7bd6a4b705ec396976
BLAKE2b-256 4da10f70c5f0860db9ad89e826f26caf6f94c0bf2913f8cbd6e294cce8102f65

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be9a323abf4064232c62b8819213abe5fa38ce26ded4bce10045e504917a33e2
MD5 021e4bf9ad8d079aa43fd5a81d17ea31
BLAKE2b-256 423b1d363227e608c7ad9ed4252d2249a3e7af975c538693c52a12871629ca50

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3490d7d273d5f706250eb5fa7aaa82e408eeb9fbb4c98b8f98ffda93b748ec1c
MD5 09fada75c2dd6324a43a77b98ba91056
BLAKE2b-256 50ed5358eed65ab062603f42205a9fac5f01f07cc7e4fdb4312d0b3c0f664154

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bb0652ac84a9449acdc4bccf0678decf4a4f6e969cc090ba8a59b6d832db764a
MD5 6d1f72d12af01a099343265e55d6ce06
BLAKE2b-256 8a0d3e28b7453041d482982660bf5132c3acde209ff4009b95b7357618eaf51b

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 42.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f492d1777d5cf3ec25a1129a3042da114c53c7eeb1e333beb26dc3a7efd7b297
MD5 7f458d41e3c9a6b17b85b2958f5a0a7d
BLAKE2b-256 0447636cf015149384fbef340c39257836527ef0504c91fece201afb02cbc560

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4917e7e2ece83a439e26cd892c6bbf8579b871f6ceb2c55053ab83250b30d924
MD5 c0fb7426fbebeb9ce482c64b11db82e0
BLAKE2b-256 7c2b1454c860e957319abdad351c86f6dca0330279f08028fa992594a67f54e1

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 861928d15899d552055a3dd9959f95a7b7c625dfc54cb02c0b69addeb2bd5200
MD5 0be23d84dcdcca461526ca4e0d68028b
BLAKE2b-256 7e4af5372114c9306465dff6cbb56e02cac36021dd11f6be200493f0bcf96b9c

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 ec394650f53e7496d67fa33b7c436c3c150b719ae0dd9250bad99e75966102e4
MD5 70f9904822dc351213d5c6a79efafad4
BLAKE2b-256 73f5df487a5f7667c4a4828846f6d39809e6c5831506d83bb64da5996f9080d2

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5d4ec8aaf52ae8eb2d81dc5b5bf77b0a6db072ddbd31f18def3aeb9501a5047e
MD5 a140b40d0bfef7d175b05b2baa97a094
BLAKE2b-256 39bcb08cdd406dc16fa3bf91e93ef64151e1b52ab9d5c0a20c70a28411d2f3f3

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipy-1.10.0rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 42.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for scipy-1.10.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 39616a15baa5f991fc366d35cd5c91d4b14366e184ca93c2bd6a8f482c7cdd05
MD5 f1427c099ac0aa00d2dd406c0a7f4704
BLAKE2b-256 3e230949f88672f67b591ef7f06e946c9f86ebd8ed337cd3a7ded955f5cd9134

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e91d5dee656315e7ed94c49a878462e3cc505e991054a3bb8d001823cb2a0135
MD5 dac38b9ada982399fca5f1cf9ceb69bc
BLAKE2b-256 090006b6b512d15b4e10321a5332d5413ead17add518b46a6843a72bbbe47aab

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 69be158db0faee9f4026c10fc9518a9af55a83de88093536457f0e4b81658103
MD5 d0dbdb3551faa5271959208aeff3a808
BLAKE2b-256 164e1b18bde875b2c0ae2a4a24b2d5e7411b04fe4611a79c81ef6d55c110a4a9

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1249d451d79602e0412700354faa425f1a7309006004a09cbbbff44b8fdc0c95
MD5 81db6504c8b430add5ff7511ba7895e2
BLAKE2b-256 622f6a4cbc6d611bed4a6c186d1e441aefe2742e6e90602b96d4a42af5cae87b

See more details on using hashes here.

File details

Details for the file scipy-1.10.0rc1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipy-1.10.0rc1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0da1b5fe54eccf12bd5f1a1e80489cb89eac363b04d6de1299f6cfe4104f8f7e
MD5 55c7f4507aad70297b589e674681a165
BLAKE2b-256 94066e456750e9156923c8cdffd37cd640f5c2d80b80d8b907cdb53892f02bd3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page